Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732274

RESUMEN

Homologous Recombination (HR) is a high-fidelity repair mechanism of DNA Double-Strand Breaks (DSBs), which are induced by irradiation, genotoxic chemicals or physiological DNA damaging processes. DSBs are also generated as intermediates during the repair of interstrand crosslinks (ICLs). In this context, the Fanconi anemia (FA) core complex, which is effectively recruited to ICLs, promotes HR-mediated DSB-repair. However, whether the FA core complex also promotes HR at ICL-independent DSBs remains controversial. Here, we identified the FA core complex members FANCL and Ube2T as HR-promoting factors in a CRISPR/Cas9-based screen with cells carrying the DSB-repair reporter DSB-Spectrum. Using isogenic cell-line models, we validated the HR-function of FANCL and Ube2T, and demonstrated a similar function for their ubiquitination-substrate FANCD2. We further show that FANCL and Ube2T are directly recruited to DSBs and are required for the accumulation of FANCD2 at these break sites. Mechanistically, we demonstrate that FANCL ubiquitin ligase activity is required for the accumulation of the nuclease CtIP at DSBs, and consequently for optimal end-resection and Rad51 loading. CtIP overexpression rescues HR in FANCL-deficient cells, validating that FANCL primarily regulates HR by promoting CtIP recruitment. Together, these data demonstrate that the FA core complex and FANCD2 have a dual genome maintenance function by promoting repair of DSBs as well as the repair of ICLs.

2.
Sci Adv ; 8(30): eabo0517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895815

RESUMEN

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


Asunto(s)
Histonas , Nucleosomas , ADN/química , Reparación del ADN , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
3.
Cancer Res ; 82(4): 615-631, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34903604

RESUMEN

Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE: Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.


Asunto(s)
Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense , Neoplasias/genética , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Células Cultivadas , Quinasa de Punto de Control 2/metabolismo , Femenino , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Neoplasias/enzimología , Linaje , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Factores de Riesgo
4.
Nat Commun ; 12(1): 6560, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772923

RESUMEN

DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.


Asunto(s)
Roturas del ADN de Doble Cadena , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Humanos , Transactivadores/genética , Factores de Transcripción/genética
5.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315086

RESUMEN

ERCC1-XPF is a multifunctional endonuclease involved in nucleotide excision repair (NER), interstrand cross-link (ICL) repair, and DNA double-strand break (DSB) repair. Only two patients with bi-allelic ERCC1 mutations have been reported, both of whom had features of Cockayne syndrome and died in infancy. Here, we describe two siblings with bi-allelic ERCC1 mutations in their teenage years. Genomic sequencing identified a deletion and a missense variant (R156W) within ERCC1 that disrupts a salt bridge below the XPA-binding pocket. Patient-derived fibroblasts and knock-in epithelial cells carrying the R156W substitution show dramatically reduced protein levels of ERCC1 and XPF. Moreover, mutant ERCC1 weakly interacts with NER and ICL repair proteins, resulting in diminished recruitment to DNA damage. Consequently, patient cells show strongly reduced NER activity and increased chromosome breakage induced by DNA cross-linkers, while DSB repair was relatively normal. We report a new case of ERCC1 deficiency that severely affects NER and considerably impacts ICL repair, which together result in a unique phenotype combining short stature, photosensitivity, and progressive liver and kidney dysfunction.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Riñón/patología , Riñón/fisiopatología , Mutación/genética , Alelos , Sustitución de Aminoácidos , Secuencia de Bases , Línea Celular , Citoplasma/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Luz , Hígado/patología , Hígado/fisiopatología , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Estabilidad Proteica , Hermanos
6.
Nat Commun ; 11(1): 5775, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188175

RESUMEN

Chromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled 'chromatin breathing' upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Histona Desacetilasa 1/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nucleic Acids Res ; 48(9): 4915-4927, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32232336

RESUMEN

Post-translational histone modifications and chromatin remodelling play a critical role controlling the integrity of the genome. Here, we identify histone lysine demethylase PHF2 as a novel regulator of the DNA damage response by regulating DNA damage-induced focus formation of 53BP1 and BRCA1, critical factors in the pathway choice for DNA double strand break repair. PHF2 knockdown leads to impaired BRCA1 focus formation and delays the resolution of 53BP1 foci. Moreover, irradiation-induced RPA phosphorylation and focus formation, as well as localization of CtIP, required for DNA end resection, to sites of DNA lesions are affected by depletion of PHF2. These results are indicative of a defective resection of double strand breaks and thereby an impaired homologous recombination upon PHF2 depletion. In accordance with these data, Rad51 focus formation and homology-directed double strand break repair is inhibited in cells depleted for PHF2. Importantly, we demonstrate that PHF2 knockdown decreases CtIP and BRCA1 protein and mRNA levels, an effect that is dependent on the demethylase activity of PHF2. Furthermore, PHF2-depleted cells display genome instability and are mildly sensitive to the inhibition of PARP. Together these results demonstrate that PHF2 promotes DNA repair by homologous recombination by controlling CtIP-dependent resection of double strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , Histona Demetilasas/fisiología , Proteínas de Homeodominio/fisiología , Reparación del ADN por Recombinación , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Células HeLa , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos
8.
EMBO Rep ; 21(1): e48460, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31782600

RESUMEN

The cellular response to DNA breaks is influenced by chromatin compaction. To identify chromatin regulators involved in the DNA damage response, we screened for genes that affect recovery following DNA damage using an RNAi library of chromatin regulators. We identified genes involved in chromatin remodeling, sister chromatid cohesion, and histone acetylation not previously associated with checkpoint recovery. Among these is the PHD finger protein 6 (PHF6), a gene mutated in Börjeson-Forssman-Lehmann syndrome and leukemic cancers. We find that loss of PHF6 dramatically compromises checkpoint recovery in G2 phase cells. Moreover, PHF6 is rapidly recruited to sites of DNA lesions in a PARP-dependent manner and required for efficient DNA repair through classical non-homologous end joining. These results indicate that PHF6 is a novel DNA damage response regulator that promotes end joining-mediated repair, thereby stimulating timely recovery from the G2 checkpoint.


Asunto(s)
Hipogonadismo , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Represoras/genética , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades , Puntos de Control de la Fase G2 del Ciclo Celular , Trastornos del Crecimiento , Humanos
9.
Nat Commun ; 10(1): 5296, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757951

RESUMEN

Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the development of a relatively fast and easy cDNA-based system for the semi high-throughput functional analysis of 48 VUS in human PALB2. By assessing the ability of PALB2 VUS to rescue the DNA repair and checkpoint defects in Palb2 knockout mouse embryonic stem (mES) cells, we identify various VUS in PALB2 that impair its function. Three VUS in the coiled-coil domain of PALB2 abrogate the interaction with BRCA1, whereas several VUS in the WD40 domain dramatically reduce protein stability. Thus, our functional assays identify damaging VUS in PALB2 that may increase cancer risk.


Asunto(s)
Neoplasias de la Mama/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Técnicas Genéticas , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Mutantes/metabolismo , Mutación Missense , Animales , ADN Complementario , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Citometría de Flujo , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Ratones , Ratones Noqueados
11.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048545

RESUMEN

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
12.
Nat Commun ; 9(1): 2280, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891926

RESUMEN

Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN/fisiología , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Inestabilidad Cromosómica , Daño del ADN , Anemia de Fanconi/terapia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/deficiencia , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Técnicas de Inactivación de Genes , Terapia Genética , Histonas/metabolismo , Humanos , Mutación , Recombinasa Rad51/metabolismo , Proteasas Ubiquitina-Específicas/deficiencia , Ubiquitinación
13.
Cancer Cell ; 33(6): 1078-1093.e12, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894693

RESUMEN

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. We also found the presence of PARG-negative clones in a subset of human serous ovarian and triple-negative breast cancers. PARG depletion restores PAR formation and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically.


Asunto(s)
Glicósido Hidrolasas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Humanos , Ratones de la Cepa 129 , Ratones Noqueados , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/efectos de los fármacos
14.
EMBO J ; 36(8): 1066-1083, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28275011

RESUMEN

The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs.


Asunto(s)
Ataxina-3/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína SUMO-1/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Ataxina-3/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rayos gamma , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína SUMO-1/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Elife ; 62017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28240985

RESUMEN

DNA double-strand breaks (DSB) elicit a ubiquitylation cascade that controls DNA repair pathway choice. This cascade involves the ubiquitylation of histone H2A by the RNF168 ligase and the subsequent recruitment of RIF1, which suppresses homologous recombination (HR) in G1 cells. The RIF1-dependent suppression is relieved in S/G2 cells, allowing PALB2-driven HR to occur. With the inhibitory impact of RIF1 relieved, it remains unclear how RNF168-induced ubiquitylation influences HR. Here, we uncover that RNF168 links the HR machinery to H2A ubiquitylation in S/G2 cells. We show that PALB2 indirectly recognizes histone ubiquitylation by physically associating with ubiquitin-bound RNF168. This direct interaction is mediated by the newly identified PALB2-interacting domain (PID) in RNF168 and the WD40 domain in PALB2, and drives DNA repair by facilitating the assembly of PALB2-containing HR complexes at DSBs. Our findings demonstrate that RNF168 couples PALB2-dependent HR to H2A ubiquitylation to promote DNA repair and preserve genome integrity.


Asunto(s)
ADN/metabolismo , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Histonas/metabolismo , Reparación del ADN por Recombinación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular Transformada , Línea Celular Tumoral , ADN/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Células HEK293 , Histonas/genética , Humanos , Láseres de Excímeros , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/efectos de la radiación , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Rayos X
16.
Cell Rep ; 17(3): 783-798, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27732854

RESUMEN

NuRD (nucleosome remodeling and histone deacetylase) is a versatile multi-protein complex with roles in transcription regulation and the DNA damage response. Here, we show that ZMYND8 bridges NuRD to a number of putative DNA-binding zinc finger proteins. The MYND domain of ZMYND8 directly interacts with PPPLΦ motifs in the NuRD subunit GATAD2A. Both GATAD2A and GATAD2B exclusively form homodimers and define mutually exclusive NuRD subcomplexes. ZMYND8 and NuRD share a large number of genome-wide binding sites, mostly active promoters and enhancers. Depletion of ZMYND8 does not affect NuRD occupancy genome-wide and only slightly affects expression of NuRD/ZMYND8 target genes. In contrast, the MYND domain in ZMYND8 facilitates the rapid, poly(ADP-ribose)-dependent recruitment of GATAD2A/NuRD to sites of DNA damage to promote repair by homologous recombination. Thus, these results show that a specific substoichiometric interaction with a NuRD subunit paralogue provides unique functionality to distinct NuRD subcomplexes.


Asunto(s)
Daño del ADN , Factores de Transcripción GATA/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Daño del ADN/genética , Reparación del ADN/genética , Elementos de Facilitación Genéticos/genética , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Represoras , Proteínas Supresoras de Tumor/química
17.
Hum Mutat ; 37(9): 914-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27233470

RESUMEN

XRCC2 genetic variants have been associated with breast cancer susceptibility. However, association studies have been complicated because XRCC2 variants are extremely rare and consist mainly of amino acid substitutions whose grouping is sensitive to misclassification by the predictive algorithms. We therefore functionally characterized variants in XRCC2 by testing their ability to restore XRCC2-DNA repair deficient phenotypes using a cDNA-based complementation approach. While the protein-truncating variants p.Leu117fs, p.Arg215*, and p.Cys217* were unable to restore XRCC2 deficiency, 19 out of 23 missense variants showed no or just a minor (<25%) reduction in XRCC2 function. The remaining four (p.Cys120Tyr, p.Arg91Trp, p.Leu133Pro, and p.Ile95Leu) had a moderate effect. Overall, measured functional effects correlated poorly with those predicted by in silico analysis. After regrouping variants from published case-control studies based on the functional effect found in this study and reanalysis of the prevalence data, there was no longer evidence for an association with breast cancer. This suggests that if breast cancer susceptibility alleles of XRCC2 exist, they are likely restricted to protein-truncating variants and a minority of missense changes. Our study emphasizes the use of functional analyses of missense variants to support variant classification in association studies.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación Missense , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Reparación del ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos
18.
Mol Cell ; 61(4): 547-562, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26895424

RESUMEN

The response to DNA double-strand breaks (DSBs) requires alterations in chromatin structure to promote the assembly of repair complexes on broken chromosomes. Non-homologous end-joining (NHEJ) is the dominant DSB repair pathway in human cells, but our understanding of how it operates in chromatin is limited. Here, we define a mechanism that plays a crucial role in regulating NHEJ in chromatin. This mechanism is initiated by DNA damage-associated poly(ADP-ribose) polymerase 1 (PARP1), which recruits the chromatin remodeler CHD2 through a poly(ADP-ribose)-binding domain. CHD2 in turn triggers rapid chromatin expansion and the deposition of histone variant H3.3 at sites of DNA damage. Importantly, we find that PARP1, CHD2, and H3.3 regulate the assembly of NHEJ complexes at broken chromosomes to promote efficient DNA repair. Together, these findings reveal a PARP1-dependent process that couples ATP-dependent chromatin remodeling with histone variant deposition at DSBs to facilitate NHEJ and safeguard genomic stability.


Asunto(s)
Cromatina/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Células HEK293 , Humanos , Poli(ADP-Ribosa) Polimerasa-1
20.
Nucleic Acids Res ; 43(14): 6919-33, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101254

RESUMEN

The faithful repair of DNA double-strand breaks (DSBs) is essential to safeguard genome stability. DSBs elicit a signaling cascade involving the E3 ubiquitin ligases RNF8/RNF168 and the ubiquitin-dependent assembly of the BRCA1-Abraxas-RAP80-MERIT40 complex. The association of BRCA1 with ubiquitin conjugates through RAP80 is known to be inhibitory to DSB repair by homologous recombination (HR). However, the precise regulation of this mechanism remains poorly understood. Through genetic screens we identified USP26 and USP37 as key de-ubiquitylating enzymes (DUBs) that limit the repressive impact of RNF8/RNF168 on HR. Both DUBs are recruited to DSBs where they actively remove RNF168-induced ubiquitin conjugates. Depletion of USP26 or USP37 disrupts the execution of HR and this effect is alleviated by the simultaneous depletion of RAP80. We demonstrate that USP26 and USP37 prevent excessive spreading of RAP80-BRCA1 from DSBs. On the other hand, we also found that USP26 and USP37 promote the efficient association of BRCA1 with PALB2. This suggests that these DUBs limit the ubiquitin-dependent sequestration of BRCA1 via the BRCA1-Abraxas-RAP80-MERIT40 complex, while promoting complex formation and cooperation of BRCA1 with PALB2-BRCA2-RAD51 during HR. These findings reveal a novel ubiquitin-dependent mechanism that regulates distinct BRCA1-containing complexes for efficient repair of DSBs by HR.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Reparación del ADN por Recombinación , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Chaperonas de Histonas , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Recombinasa Rad51/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...