Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(51): 21329-21335, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048693

RESUMEN

In this work, we report the reactivity of various annulated borole derivatives toward chalcogen (O, S, and Se) insertion. Among a series of 9-borafluorenes with different boron substituents (Ph, Br, or o-carboranyl) and a mixed thiophene-benzene-fused derivative, only the 9-o-carboranyl-substituted 9-borafluorene yielded the complete set of chalcogen-containing heteroarenes, including the first 1,2-selenaborinine derivative. To evaluate the aromaticity of this heterocyclic analogue of phenanthrene, nucleus-independent chemical shift (NICS) values were computed and compared to those of its lighter group 16 congeners.

2.
Inorg Chem ; 60(24): 19086-19097, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34818003

RESUMEN

Cationization of Bi(NPh2)3 has recently been reported to allow access to single- and double-CH activation reactions, followed by selective transformation of Bi-C into C-X functional groups (X = electrophile). Here we show that this approach can successfully be transferred to a range of bismuth amides with two aryl groups at the nitrogen, Bi(NRaryl2)3. Exchange of one nitrogen-bound aryl group for an alkyl substituent gave the first example of a homoleptic bismuth amide with a mixed aryl/alkyl substitution pattern at the nitrogen, Bi(NPhiPr)3. This compound is susceptible to selective N-N radical coupling in its neutral form and also undergoes selective CH activation when transformed into a cationic species. The second CH activation is blocked due to the absence of a second aryl moiety at nitrogen. The Lewis acidity of neutral bismuth amides is compared with that of cationic species "[Bi(aryl)(amide)(L)n]+" and "[Bi(aryl)2(L)n]+" based on the (modified) Gutmann-Beckett method (L = tetrahydrofuran or pyridine). The heteroaromatic character of [Bi(C6H3R)2NH(triflate)] compounds, which are iso-valence-electronic with anthracene, is investigated by theoretical methods. Analytical methods used in this work include nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction, mass spectrometry, and density functional theory calculations.

3.
Chemistry ; 27(57): 14250-14262, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34314083

RESUMEN

Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first "naked" (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.


Asunto(s)
Iminas , Dióxido de Nitrógeno , Cristalografía por Rayos X , Ligandos , Tropolona/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...