Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 58(23): 2789-2801.e5, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37890488

RESUMEN

Transcription factor combinations play a key role in shaping cellular identity. However, the precise relationship between specific combinations and downstream effects remains elusive. Here, we investigate this relationship within the context of the Drosophila eve locus, which is controlled by gap genes. We measure spatiotemporal levels of four gap genes in heterozygous and homozygous gap mutant embryos and correlate them with the striped eve activity pattern. Although changes in gap gene expression extend beyond the manipulated gene, the spatial patterns of Eve expression closely mirror canonical activation levels in wild type. Interestingly, some combinations deviate from the wild-type repertoire but still drive eve activation. Although in homozygous mutants some Eve stripes exhibit partial penetrance, stripes consistently emerge at reproducible positions, even with varying gap gene levels. Our findings suggest a robust molecular canalization of cell fates in gap mutants and provide insights into the regulatory constraints governing multi-enhancer gene loci.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expresión Génica , Proteínas de Homeodominio/metabolismo
2.
bioRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37398061

RESUMEN

Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, key open questions regard the cell-scale mechanics, e.g. internal vs external driving forces, and coordination, e.g. bottom-up self-organization vs top-down genetic instruction. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Specifically, we find evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which we quantify with a novel quantification tool for local tension configurations.

3.
Proc Natl Acad Sci U S A ; 119(15): e2112892119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35412853

RESUMEN

During early Drosophila embryogenesis, a network of gene regulatory interactions orchestrates terminal patterning, playing a critical role in the subsequent formation of the gut. We utilized CRISPR gene editing at endogenous loci to create live reporters of transcription and light-sheet microscopy to monitor the individual components of the posterior gut patterning network across 90 min prior to gastrulation. We developed a computational approach for fusing imaging datasets of the individual components into a common multivariable trajectory. Data fusion revealed low intrinsic dimensionality of posterior patterning and cell fate specification in wild-type embryos. The simple structure that we uncovered allowed us to construct a model of interactions within the posterior patterning regulatory network and make testable predictions about its dynamics at the protein level. The presented data fusion strategy is a step toward establishing a unified framework that would explore how stochastic spatiotemporal signals give rise to highly reproducible morphogenetic outcomes.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Drosophila melanogaster , Endodermo , Redes Reguladoras de Genes , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Endodermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica
4.
Curr Biol ; 32(8): 1861-1868.e7, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35290798

RESUMEN

Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation1-4 and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches.5-14 Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations.15-23 Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints.24-28 Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Animales , Forma de la Célula , Drosophila , Morfogénesis
5.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772813

RESUMEN

In the regulation of gene expression, information of relevance to the organism is represented by the concentrations of transcription factor molecules. To extract this information the cell must effectively "measure" these concentrations, but there are physical limits to the precision of these measurements. We use the gap gene network in the early fly embryo as an example of the tradeoff between the precision of concentration measurements and the transmission of relevant information. For thresholded measurements we find that lower thresholds are more important, and fine tuning is not required for near-optimal information transmission. We then consider general sensors, constrained only by a limit on their information capacity, and find that thresholded sensors can approach true information theoretic optima. The information theoretic approach allows us to identify the optimal sensor for the entire gap gene network and to argue that the physical limitations of sensing necessitate the observed multiplicity of enhancer elements, with sensitivities to combinations rather than single transcription factors.


Asunto(s)
Redes Reguladoras de Genes/genética , Animales , Dípteros/genética , Regulación de la Expresión Génica/genética , Modelos Biológicos , Factores de Transcripción/genética
6.
PLoS Comput Biol ; 16(8): e1008049, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822341

RESUMEN

Tissue morphogenesis relies on repeated use of dynamic behaviors at the levels of intracellular structures, individual cells, and cell groups. Rapidly accumulating live imaging datasets make it increasingly important to formalize and automate the task of mapping recurrent dynamic behaviors (motifs), as it is done in speech recognition and other data mining applications. Here, we present a "template-based search" approach for accurate mapping of sub- to multi-cellular morphogenetic motifs using a time series data mining framework. We formulated the task of motif mapping as a subsequence matching problem and solved it using dynamic time warping, while relying on high throughput graph-theoretic algorithms for efficient exploration of the search space. This formulation allows our algorithm to accurately identify the complete duration of each instance and automatically label different stages throughout its progress, such as cell cycle phases during cell division. To illustrate our approach, we mapped cell intercalations during germband extension in the early Drosophila embryo. Our framework enabled statistical analysis of intercalary cell behaviors in wild-type and mutant embryos, comparison of temporal dynamics in contracting and growing junctions in different genotypes, and the identification of a novel mode of iterative cell intercalation. Our formulation of tissue morphogenesis using time series opens new avenues for systematic decomposition of tissue morphogenesis.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Morfogénesis/fisiología , Algoritmos , Animales , División Celular/fisiología , Minería de Datos/métodos , Drosophila/citología , Drosophila/embriología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Femenino , Masculino , Microscopía Confocal , Factores de Tiempo
7.
Dev Cell ; 52(6): 794-801.e4, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142631

RESUMEN

Optogenetic perturbations, live imaging, and time-resolved ChIP-seq assays in Drosophila embryos were used to dissect the ERK-dependent control of the HMG-box repressor Capicua (Cic), which plays critical roles in development and is deregulated in human spinocerebellar ataxia and cancers. We established that Cic target genes are activated before significant downregulation of nuclear localization of Cic and demonstrated that their activation is preceded by fast dissociation of Cic from the regulatory DNA. We discovered that both Cic-DNA binding and repression are rapidly reinstated in the absence of ERK activation, revealing that inductive signaling must be sufficiently sustained to ensure robust transcriptional response. Our work provides a quantitative framework for the mechanistic analysis of dynamics and control of transcriptional repression in development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas HMGB/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Represoras/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Unión Proteica , Proteínas Represoras/genética
8.
Cell ; 176(4): 844-855.e15, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712870

RESUMEN

In developing organisms, spatially prescribed cell identities are thought to be determined by the expression levels of multiple genes. Quantitative tests of this idea, however, require a theoretical framework capable of exposing the rules and precision of cell specification over developmental time. We use the gap gene network in the early fly embryo as an example to show how expression levels of the four gap genes can be jointly decoded into an optimal specification of position with 1% accuracy. The decoder correctly predicts, with no free parameters, the dynamics of pair-rule expression patterns at different developmental time points and in various mutant backgrounds. Precise cellular identities are thus available at the earliest stages of development, contrasting the prevailing view of positional information being slowly refined across successive layers of the patterning network. Our results suggest that developmental enhancers closely approximate a mathematically optimal decoding strategy.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Genéticos , Factores de Transcripción/metabolismo
9.
Elife ; 72018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29424685

RESUMEN

During embryogenesis tissue layers undergo morphogenetic flow rearranging and folding into specific shapes. While developmental biology has identified key genes and local cellular processes, global coordination of tissue remodeling at the organ scale remains unclear. Here, we combine in toto light-sheet microscopy of the Drosophila embryo with quantitative analysis and physical modeling to relate cellular flow with the patterns of force generation during the gastrulation process. We find that the complex spatio-temporal flow pattern can be predicted from the measured meso-scale myosin density and anisotropy using a simple, effective viscous model of the tissue, achieving close to 90% accuracy with one time dependent and two constant parameters. Our analysis uncovers the importance of a) spatial modulation of myosin distribution on the scale of the embryo and b) the non-locality of its effect due to mechanical interaction of cells, demonstrating the need for the global perspective in the study of morphogenetic flow.


Asunto(s)
Drosophila/embriología , Gastrulación , Miosinas/análisis , Animales , Microscopía , Análisis Espacio-Temporal
10.
Elife ; 62017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28891464

RESUMEN

In Drosophila, graded expression of the maternal transcription factor Bicoid (Bcd) provides positional information to activate target genes at different positions along the anterior-posterior axis. We have measured the genome-wide binding profile of Bcd using ChIP-seq in embryos expressing single, uniform levels of Bcd protein, and grouped Bcd-bound targets into four classes based on occupancy at different concentrations. By measuring the biochemical affinity of target enhancers in these classes in vitro and genome-wide chromatin accessibility by ATAC-seq, we found that the occupancy of target sequences by Bcd is not primarily determined by Bcd binding sites, but by chromatin context. Bcd drives an open chromatin state at a subset of its targets. Our data support a model where Bcd influences chromatin structure to gain access to concentration-sensitive targets at high concentrations, while concentration-insensitive targets are found in more accessible chromatin and are bound at low concentrations. This may be a common property of developmental transcription factors that must gain early access to their target enhancers while the chromatin state of the genome is being remodeled during large-scale transitions in the gene regulatory landscape.


Asunto(s)
Cromatina/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Transactivadores/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteínas de Drosophila , Unión Proteica , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 114(5): 1051-1056, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096360

RESUMEN

Many models of morphogenesis are forced to assume specific mechanical properties of cells, because the actual mechanical properties of living tissues are largely unknown. Here, we measure the rheology of epithelial cells in the cellularizing Drosophila embryo by injecting magnetic particles and studying their response to external actuation. We establish that, on timescales relevant to epithelial morphogenesis, the cytoplasm is predominantly viscous, whereas the cellular cortex is elastic. The timescale of elastic stress relaxation has a lower bound of 4 min, which is comparable to the time required for internalization of the ventral furrow during gastrulation. The cytoplasm was measured to be ∼103-fold as viscous as water. We show that elasticity depends on the actin cytoskeleton and conclude by discussing how these results relate to existing mechanical models of morphogenesis.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/fisiología , Células Epiteliales/fisiología , Nanopartículas de Magnetita , Imanes , Animales , Citoplasma/efectos de los fármacos , Citoplasma/fisiología , Citoesqueleto/fisiología , Elasticidad , Embrión no Mamífero/ultraestructura , Gastrulación/fisiología , Células Gigantes/fisiología , Magnetismo , Microinyecciones , Modelos Biológicos , Morfogénesis , Reología , Estrés Mecánico , Viscosidad
12.
Elife ; 52016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27879204

RESUMEN

During embryogenesis, the initial chromatin state is established during a period of rapid proliferative activity. We have measured with 3-min time resolution how heritable patterns of chromatin structure are initially established and maintained during the midblastula transition (MBT). We find that regions of accessibility are established sequentially, where enhancers are opened in advance of promoters and insulators. These open states are stably maintained in highly condensed mitotic chromatin to ensure faithful inheritance of prior accessibility status across cell divisions. The temporal progression of establishment is controlled by the biological timers that control the onset of the MBT. In general, acquisition of promoter accessibility is controlled by the biological timer that measures the nucleo-cytoplasmic (N:C) ratio, whereas timing of enhancer accessibility is regulated independently of the N:C ratio. These different timing classes each associate with binding sites for two transcription factors, GAGA-factor and Zelda, previously implicated in controlling chromatin accessibility at ZGA.


Asunto(s)
Cromatina/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Patrón de Herencia , Factores de Transcripción/genética , Animales , Sitios de Unión , Relojes Biológicos/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citosol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Elementos de Facilitación Genéticos , Elementos Aisladores , Proteínas Nucleares , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/metabolismo
14.
Curr Top Dev Biol ; 113: 113-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26358872

RESUMEN

During the maternal-to-zygotic transition (MZT), major changes in cell cycle regulation coincide with large-scale zygotic genome activation. In this chapter, we discuss the current understanding of how the cell cycle is remodeled over the course of the Drosophila MZT, and how the temporal precision of this event is linked to contemporaneous alterations in genome-wide chromatin structure and transcriptional activity. The cell cycle is initially lengthened during the MZT by activation of the DNA replication checkpoint but, subsequently, zygotically supplied factors are essential for establishing lasting modifications to the cell cycle.


Asunto(s)
Ciclo Celular , Drosophila melanogaster/citología , Activación Transcripcional/genética , Animales , Blástula/citología , Drosophila melanogaster/genética , Genoma de los Insectos , Cigoto/citología
15.
Nat Cell Biol ; 17(5): 558-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25848747

RESUMEN

Messenger RNA localization is a conserved mechanism for spatial control of protein synthesis, with key roles in generating cellular and developmental asymmetry. Whereas different transcripts may be targeted to the same subcellular domain, the extent to which their localization is coordinated is unclear. Using quantitative single-molecule imaging, we analysed the assembly of Drosophila germ plasm mRNA granules inherited by nascent germ cells. We find that the germ-cell-destined transcripts nanos, cyclin B and polar granule component travel within the oocyte as ribonucleoprotein particles containing single mRNA molecules but co-assemble into multi-copy heterogeneous granules selectively at the posterior of the oocyte. The stoichiometry and dynamics of assembly indicate a defined stepwise sequence. Our data suggest that co-packaging of these transcripts ensures their effective segregation to germ cells. In contrast, compartmentalization of the germline determinant oskar mRNA into different granules limits its entry into germ cells. This exclusion is required for proper germline development.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Ciclina B/genética , Gránulos Citoplasmáticos/metabolismo , Drosophila melanogaster/citología , Microscopía por Video , Factor B de Elongación Transcripcional Positiva/genética , Proteínas de Unión al ARN/genética , Transcripción Genética
16.
Cell ; 160(6): 1169-81, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25748651

RESUMEN

A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA.


Asunto(s)
Replicación del ADN , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Cigoto/metabolismo , Animales , Blástula/citología , Blástula/metabolismo , Ciclo Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Femenino , Masculino , Proteínas Nucleares , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Proteína de Replicación A/metabolismo , Factores de Transcripción/metabolismo
17.
Biophys J ; 107(3): L1-L4, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25099818

RESUMEN

Covalent modification cycles (systems in which the activity of a substrate is regulated by the action of two opposing enzymes) and ligand/receptor interactions are ubiquitous in signaling systems and their steady-state properties are well understood. However, the behavior of such systems far from steady state remains unclear. Here, we analyze the properties of covalent modification cycles and ligand/receptor interactions driven by the accumulation of the activating enzyme and the ligand, respectively. We show that for a large range of parameters both systems produce sharp switchlike response and yet allow for temporal integration of the signal, two desirable signaling properties. Ultrasensitivity is observed also in a region of parameters where the steady-state response is hyperbolic. The temporal integration properties are tunable by regulating the levels of the deactivating enzyme and receptor, as well as by adjusting the rate of accumulation of the activating enzyme and ligand. We propose that this tunability is used to generate precise responses in signaling systems.


Asunto(s)
Modelos Biológicos , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Enzimas/metabolismo , Cinética
18.
Development ; 141(14): 2895-900, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24948599

RESUMEN

Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/embriología , Epitelio/embriología , Gastrulación , Animales , Forma de la Célula , Rastreo Celular , Drosophila melanogaster/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Procesamiento de Imagen Asistido por Computador , Programas Informáticos
19.
Proc Natl Acad Sci U S A ; 110(41): 16301-8, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24089448

RESUMEN

Cells in a developing embryo have no direct way of "measuring" their physical position. Through a variety of processes, however, the expression levels of multiple genes come to be correlated with position, and these expression levels thus form a code for "positional information." We show how to measure this information, in bits, using the gap genes in the Drosophila embryo as an example. Individual genes carry nearly two bits of information, twice as much as would be expected if the expression patterns consisted only of on/off domains separated by sharp boundaries. Taken together, four gap genes carry enough information to define a cell's location with an error bar of ~1 along the anterior/posterior axis of the embryo. This precision is nearly enough for each cell to have a unique identity, which is the maximum information the system can use, and is nearly constant along the length of the embryo. We argue that this constancy is a signature of optimality in the transmission of information from primary morphogen inputs to the output of the gap gene network.


Asunto(s)
Movimiento Celular/fisiología , Drosophila/embriología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Modelos Biológicos , Proteínas/metabolismo , Animales
20.
Dev Cell ; 25(3): 299-309, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23623612

RESUMEN

Localized cell shape change initiates epithelial folding, while neighboring cell invagination determines the final depth of an epithelial fold. The mechanism that controls the extent of invagination remains unknown. During Drosophila gastrulation, a higher number of cells undergo invagination to form the deep posterior dorsal fold, whereas far fewer cells become incorporated into the initially very similar anterior dorsal fold. We find that a decrease in α-catenin activity causes the anterior fold to invaginate as extensively as the posterior fold. In contrast, constitutive activation of the small GTPase Rap1 restricts invagination of both dorsal folds in an α-catenin-dependent manner. Rap1 activity appears spatially modulated by Rapgap1, whose expression levels are high in the cells that flank the posterior fold but low in the anterior fold. We propose a model whereby distinct activity states of Rap1 modulate α-catenin-dependent coupling between junctions and actin to control the extent of epithelial invagination.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Células Epiteliales/citología , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Membrana Celular/metabolismo , Forma de la Célula , Drosophila/citología , Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Embrión no Mamífero/metabolismo , Activación Enzimática , Células Epiteliales/enzimología , Genes de Insecto , Proteínas Fluorescentes Verdes/metabolismo , Uniones Intercelulares/metabolismo , Interferencia de ARN , Factores de Tiempo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...