Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
ISME J ; 17(2): 286-296, 2023 Feb.
Article En | MEDLINE | ID: mdl-36424517

Members of the bacterial genus Pseudomonas form mutualistic, commensal, and pathogenic associations with diverse hosts. The prevalence of host association across the genus suggests that symbiosis may be a conserved ancestral trait and that distinct symbiotic lifestyles may be more recently evolved. Here we show that the ColR/S two-component system, part of the Pseudomonas core genome, is functionally conserved between Pseudomonas aeruginosa and Pseudomonas fluorescens. Using plant rhizosphere colonization and virulence in a murine abscess model, we show that colR is required for commensalism with plants and virulence in animals. Comparative transcriptomics revealed that the ColR regulon has diverged between P. aeruginosa and P. fluorescens and deleting components of the ColR regulon revealed strain-specific, but not host-specific, requirements for ColR-dependent genes. Collectively, our results suggest that ColR/S allows Pseudomonas to sense and respond to a host, but that the ColR-regulon has diverged between Pseudomonas strains with distinct lifestyles. This suggests that conservation of two-component systems, coupled with life-style dependent diversification of the regulon, may play a role in host association and lifestyle transitions.


Pseudomonas fluorescens , Pseudomonas , Animals , Mice , Pseudomonas/genetics , Pseudomonas fluorescens/genetics , Pseudomonas aeruginosa , Plants/microbiology
2.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Article En | MEDLINE | ID: mdl-36521845

Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.


Plants , Symbiosis , Animals , Humans , Plants/microbiology , Bacteria
3.
mBio ; 13(1): e0289221, 2021 02 22.
Article En | MEDLINE | ID: mdl-35100865

Plants form commensal associations with soil microorganisms, creating a root microbiome that provides benefits, including protection against pathogens. While bacteria can inhibit pathogens through the production of antimicrobial compounds in vitro, it is largely unknown how microbiota contribute to pathogen protection in planta. We developed a gnotobiotic model consisting of Arabidopsis thaliana and the opportunistic pathogen Pseudomonas sp. N2C3, to identify mechanisms that determine the outcome of plant-pathogen-microbiome interactions in the rhizosphere. We screened 25 phylogenetically diverse Pseudomonas strains for their ability to protect against N2C3 and found that commensal strains closely related to N2C3, including Pseudomonas sp. WCS365, were more likely to protect against pathogenesis. We used comparative genomics to identify genes unique to the protective strains and found no genes that correlate with protection, suggesting that variable regulation of components of the core Pseudomonas genome may contribute to pathogen protection. We found that commensal colonization level was highly predictive of protection, so we tested deletions in genes required for Arabidopsis rhizosphere colonization. We identified a response regulator colR, and two ColR-dependent genes with predicted roles in membrane modifications (warB and pap2_2), that are required for Pseudomonas-mediated protection from N2C3. We found that WCS365 also protects against the agricultural pathogen Pseudomonas fuscovaginae SE-1, the causal agent of bacterial sheath brown rot of rice, in a ColR-dependent manner. This work establishes a gnotobiotic model to uncover mechanisms by which members of the microbiome can protect hosts from pathogens and informs our understanding of the use of beneficial strains for microbiome engineering in dysbiotic soil systems. IMPORTANCE Microbiota can protect diverse hosts from pathogens, and microbiome dysbiosis can result in increased vulnerability to opportunistic pathogens. Here, we developed a rhizosphere commensal-pathogen model to identify bacterial strains and mechanisms that can protect plants from an opportunistic Pseudomonas pathogen. Our finding that protective strains are closely related to the pathogen suggests that the presence of specific microbial taxa may help protect plants from disease. We found that commensal colonization level was highly correlated with protection, suggesting that competition with pathogens may play a role in protection. As we found that commensal Pseudomonas were also able to protect against an agricultural pathogen, this system may be broadly relevant for identifying strains and mechanisms to control agriculturally important pathogens. This work also suggests that beneficial plant-associated microbes may be useful for engineering soils where microbial complexity is low, such as hydroponic, or disturbed agricultural soils.


Arabidopsis , Pseudomonas fluorescens , Arabidopsis/microbiology , Pseudomonas fluorescens/genetics , Pseudomonas/genetics , Soil , Plant Roots/microbiology , Transcription Factors
4.
J Bacteriol ; 203(5)2021 02 08.
Article En | MEDLINE | ID: mdl-33288624

Protein phosphorylation is a universal mechanism for transducing cellular signals in prokaryotes and eukaryotes. The histidine kinase CckA, the histidine phosphotransferase ChpT, and the response regulator CtrA are conserved throughout the alphaproteobacteria. In Rhodobacter capsulatus, these proteins are key regulators of the gene transfer agent (RcGTA), which is present in several alphaproteobacteria. Using purified recombinant R. capsulatus proteins, we show in vitro autophosphorylation of CckA protein, and phosphotransfer to ChpT and thence to CtrA, to demonstrate biochemically that they form a phosphorelay. The secondary messenger cyclic di-GMP changed CckA from a kinase to a phosphatase, resulting in reversal of the phosphotransfer flow in the relay. The substitutions of two residues in CckA greatly affected the kinase or phosphatase activity of the protein in vitro, and production of mutant CckA proteins in vivo confirmed the importance of kinase but not phosphatase activity for the lytic release of RcGTA. However, phosphatase activity was needed to produce functional RcGTA particles. The binding of cyclic di-GMP to the wild-type and mutant CckA proteins was evaluated directly using a pulldown assay based on biotinylated cyclic di-GMP and streptavidin-linked beads.IMPORTANCE The CckA, ChpT, and CtrA phosphorelay proteins are widespread in the alphaproteobacteria, and there are two groups of organisms that differ in terms of whether this pathway is essential for cell viability. Little is known about the biochemical function of these proteins in organisms where the pathway is not essential, a group that includes Rhodobacter capsulatus This work demonstrates biochemically that CckA, ChpT, and CtrA also form a functional phosphorelay in the latter group and that the direction of phosphotransfer is reversed by cyclic di-GMP. It is important to improve understanding of more representatives of this pathway in order to obtain deeper insight into the function, composition, and evolutionary significance of a wider range of bacterial regulatory networks.


Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Gene Transfer, Horizontal , Histidine Kinase/metabolism , Phosphotransferases/metabolism , Rhodobacter capsulatus/genetics , Rhodobacter capsulatus/metabolism , Transcription Factors/metabolism , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cyclic GMP/metabolism , Gene Transfer Techniques , Histidine Kinase/genetics , Histidine Kinase/isolation & purification , Phosphorylation , Phosphotransferases/genetics , Phosphotransferases/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/isolation & purification
5.
mBio ; 9(6)2018 11 06.
Article En | MEDLINE | ID: mdl-30401768

Pseudomonas fluorescens and related plant root ("rhizosphere")-associated species contribute to plant health by modulating defenses and facilitating nutrient uptake. To identify bacterial fitness determinants in the rhizosphere of the model plant Arabidopsis thaliana, we performed a high-throughput transposon sequencing (Tn-Seq) screen using the biocontrol and growth-promoting strain Pseudomonas sp. WCS365. The screen, which was performed in parallel on wild-type and immunocompromised Arabidopsis plants, identified 231 genes that increased fitness in the rhizosphere of wild-type plants. A subset of these genes decreased fitness in the rhizosphere of immunocompromised plants. We hypothesized that these genes might be involved in avoiding plant defenses and verified 7 Pseudomonas sp. WCS365 candidate genes by generating clean deletions. We found that two of these deletion mutants, ΔmorA (encoding a putative diguanylate cyclase/phosphodiesterase) and ΔspuC (encoding a putrescine aminotransferase), formed enhanced biofilms and inhibited plant growth. We found that mutants ΔspuC and ΔmorA induced pattern-triggered immunity (PTI) as measured by induction of an Arabidopsis PTI reporter and FLS2/BAK1-dependent inhibition of plant growth. We show that MorA acts as a phosphodiesterase to inhibit biofilm formation, suggesting a possible role in biofilm dispersal. We found that both putrescine and its precursor arginine promote biofilm formation that is enhanced in the ΔspuC mutant, which cannot break down putrescine, suggesting that putrescine might serve as a signaling molecule in the rhizosphere. Collectively, this work identified novel bacterial factors required to evade plant defenses in the rhizosphere.IMPORTANCE While rhizosphere bacteria hold the potential to improve plant health and fitness, little is known about the bacterial genes required to evade host immunity. Using a model system consisting of Arabidopsis and a beneficial Pseudomonas sp. isolate, we identified bacterial genes required for both rhizosphere fitness and for evading host immune responses. This work advances our understanding of how evasion of host defenses contributes to survival in the rhizosphere.


Arabidopsis/immunology , Genome, Bacterial , Pseudomonas fluorescens/genetics , Rhizosphere , Arabidopsis/microbiology , Biofilms/growth & development , Genes, Bacterial , Genetic Fitness , Plant Immunity , Pseudomonas fluorescens/enzymology , Putrescine/metabolism
6.
Appl Environ Microbiol ; 84(11)2018 06 01.
Article En | MEDLINE | ID: mdl-29625982

Several members of the Rhodobacterales (Alphaproteobacteria) produce a conserved horizontal gene transfer vector, called the gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system used to study GTA biology is the Rhodobacter capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls the production and maturation of the RcGTA particle and RcGTA release from cells. CtrA also controls the natural transformation-like system required for cells to receive RcGTA-donated DNA. Here, we report that dysregulation of the CckA-ChpT-CtrA phosphorelay either by the loss of the PAS domain protein DivL or by substitution of the autophosphorylation residue of the hybrid histidine kinase CckA decreased CtrA phosphorylation and greatly increased RcGTA protein production in R. capsulatus We show that the loss of the ClpXP protease or the three C-terminal residues of CtrA results in increased CtrA levels in R. capsulatus and identify ClpX(P) to be essential for the maturation of RcGTA particles. Furthermore, we show that CtrA phosphorylation is important for head spike production. Our results provide novel insight into the regulation of CtrA and GTAs in the RhodobacteralesIMPORTANCE Members of the Rhodobacterales are abundant in ocean and freshwater environments. The conserved GTA produced by many Rhodobacterales may have an important role in horizontal gene transfer (HGT) in aquatic environments and provide a significant contribution to their adaptation. GTA production is controlled by bacterial regulatory systems, including the conserved CckA-ChpT-CtrA phosphorelay; however, several questions about GTA regulation remain. Our identification that a short DivL homologue and ClpXP regulate CtrA in R. capsulatus extends the model of CtrA regulation from Caulobacter crescentus to a member of the Rhodobacterales We found that the magnitude of RcGTA production greatly depends on DivL and CckA kinase activity, adding yet another layer of regulatory complexity to RcGTA. RcGTA is known to undergo CckA-dependent maturation, and we extend the understanding of this process by showing that the ClpX chaperone is required for formation of tailed, DNA-containing particles.


Bacterial Proteins/genetics , Endopeptidase Clp/genetics , Gene Expression Regulation, Bacterial , Rhodobacter capsulatus/enzymology , Rhodobacter capsulatus/genetics , Endopeptidase Clp/metabolism , Gene Transfer, Horizontal , Phosphorylation , Protein Domains
7.
Mol Ecol ; 27(8): 1833-1847, 2018 04.
Article En | MEDLINE | ID: mdl-29087012

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.


Arabidopsis/genetics , Brassicaceae/genetics , Plant Diseases/genetics , Pseudomonas syringae/pathogenicity , Arabidopsis/microbiology , Brassicaceae/microbiology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Herbivory/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/microbiology , Pseudomonas syringae/genetics , Rhizosphere , Salicylic Acid/metabolism
...