Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(12): 2383-2396.e5, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37236182

RESUMEN

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.


Asunto(s)
Biodiversidad , Invertebrados , Océanos y Mares , Animales , Invertebrados/clasificación , Biología Marina , Océano Pacífico , Sedimentos Geológicos
2.
Sci Rep ; 13(1): 2417, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813819

RESUMEN

Semiarid rangelands are identified as at high risk of degradation due to anthropogenic pressure and climate change. Through tracking timelines of degradation we aimed to identify whether degradation results from a loss of resistance to environmental shocks, or loss of recovery, both of which are important prerequisites for restoration. Here we combined extensive field surveys with remote sensing data to explore whether long-term changes in grazing potential demonstrate loss of resistance (ability to maintain function despite pressure) or loss of recovery (ability to recover following shocks). To monitor degradation, we created a bare ground index: a measure of grazeable vegetation cover visible in satellite imagery, allowing for machine learning based image classification. We found that locations that ended up the most degraded tended to decline in condition more during years of widespread degradation but maintained their recovery potential. These results suggest that resilience in rangelands is lost through declines in resistance, rather than loss of recovery potential. We show that the long-term rate of degradation correlates negatively with rainfall and positively with human population and livestock density, and conclude that sensitive land and grazing management could enable restoration of degraded landscapes, given their retained ability to recover.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Humanos , Tanzanía , Conservación de los Recursos Naturales/métodos , Imágenes Satelitales , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA