Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38932687

RESUMEN

The objective of this study is to derive mathematical equations that closely describe published data on world record running speed as a function of distance, age and sex. Running speed declines with increasing distance and age. Over long distances, where aerobic metabolism is dominant, speed declines in proportion to the logarithm of distance. Over short distances, anaerobic metabolism contributes significantly to performance, and speed is increased relative to the trend of the long-distance data. Equations are derived that explicitly represent these effects. The decline in speed with age is represented by an age-dependent multiplicative factor, which exhibits increasing sensitivity to age as age increases. Using these equations, data are analyzed separately for males and females, and close fits to published data are demonstrated, particularly for younger age groups. These equations provide insight into the contributions of aerobic and anaerobic components of metabolism to athletic performance and a framework for comparisons of performance across wide ranges of distance and age.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38745348

RESUMEN

BACKGROUND: The Compensatory Reserve Metric (CRM) provides a time sensitive indicator of hemodynamic decompensation. However, its in-field utility is limited due to the size and cost-intensive nature of standard vital sign monitors or photoplethysmographic volume-clamp (PPGVC) devices used to measure arterial waveforms. In this regard, photoplethysmographic measurements obtained from pulse oximetry (PPGPO) may serve as a useful, portable alternative. This study aimed to validate CRM values obtained using PPGPO. METHODS: Forty-nine healthy adults (25 females) underwent a graded lower body negative pressure (LBNP) protocol to simulate hemorrhage. Arterial waveforms were sampled using PPGPO and PPGVC. The CRM was calculated using a one-dimensional convolutional neural network. Cardiac output and stroke volume were measured using PPGVC. A brachial artery catheter was used to measure intraarterial pressure. A 3-lead ECG was used to measure heart rate. Fixed-effect linear mixed models with repeated measures were used to examine the association between CRM values and physiologic variables. Log-rank analyses were used to examine differences in shock determination during LBNP between monitored hemodynamic parameters. RESULTS: The median LBNP stage reached was 70 mmHg (Range: 45-100 mmHg). Relative to baseline, at tolerance there was a 47±12% reduction in stroke volume, 64±27% increase in heart rate, and 21±7% reduction in systolic blood pressure (P<0.001 for all). CRM values obtained with both PPGPO and PPGVC were associated with changes in heart rate (P<0.001), stroke volume (P<0.001), and pulse pressure (P<0.001). Furthermore, they provided an earlier detection of hemodynamic shock relative to the traditional metrics of shock index (P<0.001 for both), systolic blood pressure (P<0.001 for both), and heart rate (P=0.001 for both). CONCLUSION: The CRM obtained from PPGPO provides a valid, time-sensitized prediction of hemodynamic decompensation, opening the door to provide military medical personnel noninvasive in-field advanced capability for early detection of hemorrhage and imminent onset of shock. LEVEL OF EVIDENCE: Diagnostic Tests or Criteria, Level IV.

3.
J Clin Monit Comput ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733507

RESUMEN

PURPOSE: The compensatory reserve metric (CRM) is a novel tool to predict cardiovascular decompensation during hemorrhage. The CRM is traditionally computed using waveforms obtained from photoplethysmographic volume-clamp (PPGVC), yet invasive arterial pressures may be uniquely available. We aimed to examine the level of agreement of CRM values computed from invasive arterial-derived waveforms and values computed from PPGVC-derived waveforms. METHODS: Sixty-nine participants underwent graded lower body negative pressure to simulate hemorrhage. Waveform measurements from a brachial arterial catheter and PPGVC finger-cuff were collected. A PPGVC brachial waveform was reconstructed from the PPGVC finger waveform. Thereafter, CRM values were computed using a deep one-dimensional convolutional neural network for each of the following source waveforms; (1) invasive arterial, (2) PPGVC brachial, and (3) PPGVC finger. Bland-Altman analyses were used to determine the level of agreement between invasive arterial CRM values and PPGVC CRM values, with results presented as the Mean Bias [95% Limits of Agreement]. RESULTS: The mean bias between invasive arterial- and PPGVC brachial CRM values at rest, an applied pressure of -45mmHg, and at tolerance was 6% [-17%, 29%], 1% [-28%, 30%], and 0% [-25%, 25%], respectively. Additionally, the mean bias between invasive arterial- and PPGVC finger CRM values at rest, applied pressure of -45mmHg, and tolerance was 2% [-22%, 26%], 8% [-19%, 35%], and 5% [-15%, 25%], respectively. CONCLUSION: There is generally good agreement between CRM values obtained from invasive arterial waveforms and values obtained from PPGVC waveforms. Invasive arterial waveforms may serve as an alternative for computation of the CRM.

4.
Sci Rep ; 14(1): 8719, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622207

RESUMEN

Occult hemorrhages after trauma can be present insidiously, and if not detected early enough can result in patient death. This study evaluated a hemorrhage model on 18 human subjects, comparing the performance of traditional vital signs to multiple off-the-shelf non-invasive biomarkers. A validated lower body negative pressure (LBNP) model was used to induce progression towards hypovolemic cardiovascular instability. Traditional vital signs included mean arterial pressure (MAP), electrocardiography (ECG), plethysmography (Pleth), and the test systems utilized electrical impedance via commercial electrical impedance tomography (EIT) and multifrequency electrical impedance spectroscopy (EIS) devices. Absolute and relative metrics were used to evaluate the performance in addition to machine learning-based modeling. Relative EIT-based metrics measured on the thorax outperformed vital sign metrics (MAP, ECG, and Pleth) achieving an area-under-the-curve (AUC) of 0.99 (CI 0.95-1.00, 100% sensitivity, 87.5% specificity) at the smallest LBNP change (0-15 mmHg). The best vital sign metric (MAP) at this LBNP change yielded an AUC of 0.6 (CI 0.38-0.79, 100% sensitivity, 25% specificity). Out-of-sample predictive performance from machine learning models were strong, especially when combining signals from multiple technologies simultaneously. EIT, alone or in machine learning-based combination, appears promising as a technology for early detection of progression toward hemodynamic instability.


Asunto(s)
Sistema Cardiovascular , Hipovolemia , Humanos , Hipovolemia/diagnóstico , Presión Negativa de la Región Corporal Inferior , Signos Vitales , Biomarcadores
5.
J Appl Physiol (1985) ; 136(1): 177-188, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059290

RESUMEN

Hypoxia is known to increase muscle fatigue via both central and peripheral mechanisms. Females are typically less fatigable than males during isometric fatiguing contractions due to greater peripheral blood flow. However, sex differences in fatigue are blunted during dynamic fatiguing tasks. Thus, this study determined the interactions of sex and hypoxia on knee extensor muscle contractile function during a dynamic, ischemic fatiguing contraction. Electrical stimulation was used to determine contractile properties of the knee extensor muscles in eight males and eight females before and after an ischemic, dynamic fatiguing task while inspiring room air or a hypoxic gas mixture (10% O2:90% N2). Fatigue (assessed as time-to-task failure) was ∼10% greater during the hypoxic condition (94.3 ± 33.4 s) compared with normoxic condition (107.0 ± 42.8 s, P = 0.041) and ∼40% greater for females than males (77.1 ± 18.8 vs. 124.2 ± 38.7, P < 0.001). Immediately after the dynamic fatiguing task, there were reductions in maximal voluntary contraction force (P = 0.034) and electrically evoked twitch force (P < 0.001), and these reductions did not differ based on sex or inspirate. Cerebral tissue oxygenation showed a significant interaction of time and inspirate (P = 0.003) whereby it increased during normoxia and remained unchanged in hypoxia. No sex-related differences in the changes of cerebral tissue oxygenation were observed (P = 0.528). These data suggest that acute hypoxia increases central fatigue during ischemic single-leg exercise resulting in earlier exercise termination, but the effect does not differ based on sex.NEW & NOTEWORTHY Hypoxia exacerbates fatigue via central mechanisms after ischemic single-leg exercise. The greater fatigue observed during ischemic dynamic fatiguing exercise with hypoxia inspirate did not differ between the sexes. Hypoxia-induced central limitations are present in acute ischemic exercise and do not appear different in males and females.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Femenino , Humanos , Masculino , Electromiografía/métodos , Músculo Esquelético/fisiología , Fatiga Muscular/fisiología , Músculo Cuádriceps , Hipoxia , Contracción Muscular , Contracción Isométrica/fisiología
6.
Top Spinal Cord Inj Rehabil ; 29(4): 1-15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076494

RESUMEN

Background: Individuals with spinal cord injury (SCI) have lower levels of physical activity compared to the nondisabled population. Exercise guidelines recommend moderate or vigorous exercise to improve cardiovascular health and reduce cardiometabolic risk factors in persons with SCI. High-intensity interval training (HIIT) is a popular exercise choice and encompasses brief periods of vigorous exercise paired with intermittent periods of recovery. Objectives: This review describes the available literature on HIIT for individuals with SCI, including differences in protocol design and suggested areas of further investigation. Methods: Our institution's library system performed the comprehensive search. The primary keywords and phrases used to search included spinal cord injury, high-intensity interval training, tetraplegia, paraplegia, and several other related terms. Results: Initially 62 records were screened, and 36 were deemed outside the scope of this review. Twenty-six studies published between 2001 and 2021 fulfilled the eligibility criteria and were divided among two researchers for review and analysis. All records required persons with SCI and a standardized HIIT intervention. Study design varied widely with respect to mode of exercise, prescribed intensity, duration of performance intervals, and session duration. This variability necessitates further investigation into the specifics of a HIIT prescription and the associated outcomes for persons with SCI. Conclusion: Standardization of HIIT protocols may lead to more robust conclusions regarding its effects on cardiorespiratory fitness as well as mitigation of cardiometabolic risk factors. Meta-analyses will eventually be needed on proper dosing and session parameters to improve cardiorespiratory fitness and cardiometabolic risk factors.


Asunto(s)
Capacidad Cardiovascular , Sistema Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Traumatismos de la Médula Espinal , Humanos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Ejercicio Físico
7.
Mayo Clin Proc Innov Qual Outcomes ; 7(5): 499-513, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37859995

RESUMEN

Objective: To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods: On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results: Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion: During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.

8.
PLoS One ; 18(10): e0292835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824583

RESUMEN

OBJECTIVE: There is widespread agreement about the key role of hemoglobin for oxygen transport. Both observational and interventional studies have examined the relationship between hemoglobin levels and maximal oxygen uptake ([Formula: see text]) in humans. However, there exists considerable variability in the scientific literature regarding the potential relationship between hemoglobin and [Formula: see text]. Thus, we aimed to provide a comprehensive analysis of the diverse literature and examine the relationship between hemoglobin levels (hemoglobin concentration and mass) and [Formula: see text] (absolute and relative [Formula: see text]) among both observational and interventional studies. METHODS: A systematic search was performed on December 6th, 2021. The study procedures and reporting of findings followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Article selection and data abstraction were performed in duplicate by two independent reviewers. Primary outcomes were hemoglobin levels and [Formula: see text] values (absolute and relative). For observational studies, meta-regression models were performed to examine the relationship between hemoglobin levels and [Formula: see text] values. For interventional studies, meta-analysis models were performed to determine the change in [Formula: see text] values (standard paired difference) associated with interventions designed to modify hemoglobin levels or [Formula: see text]. Meta-regression models were then performed to determine the relationship between a change in hemoglobin levels and the change in [Formula: see text] values. RESULTS: Data from 384 studies (226 observational studies and 158 interventional studies) were examined. For observational data, there was a positive association between absolute [Formula: see text] and hemoglobin levels (hemoglobin concentration, hemoglobin mass, and hematocrit (P<0.001 for all)). Prespecified subgroup analyses demonstrated no apparent sex-related differences among these relationships. For interventional data, there was a positive association between the change of absolute [Formula: see text] (standard paired difference) and the change in hemoglobin levels (hemoglobin concentration (P<0.0001) and hemoglobin mass (P = 0.006)). CONCLUSION: These findings suggest that [Formula: see text] values are closely associated with hemoglobin levels among both observational and interventional studies. Although our findings suggest a lack of sex differences in these relationships, there were limited studies incorporating females or stratifying results by biological sex.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Humanos , Masculino , Femenino
9.
Physiol Rep ; 11(17): e15806, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653565

RESUMEN

Oxygen transport from the lungs to peripheral tissue is dependent on the affinity of hemoglobin for oxygen. Recent experimental data have suggested that the maximum human capacity for oxygen uptake and utilization (V̇O2 max) at sea level and altitude (~3000 m) is sensitive to alterations in hemoglobin-oxygen affinity. However, the effect of such alterations on V̇O2 max at extreme altitudes remains largely unknown due to the rarity of mutations affecting hemoglobin-oxygen affinity. This work uses a mathematical model that couples pulmonary oxygen uptake with systemic oxygen utilization under conditions of high metabolic demand to investigate the effect of hemoglobin-oxygen affinity on V̇O2 max as a function of altitude. The model includes the effects of both diffusive and convective limitations on oxygen transport. Pulmonary oxygen uptake is calculated using a spatially-distributed model that accounts for the effects of hematocrit and hemoglobin-oxygen affinity. Systemic oxygen utilization is calculated assuming Michaelis-Menten kinetics. The pulmonary and systemic model components are solved iteratively to compute predicted arterial and venous oxygen levels. Values of V̇O2 max are predicted for several values of hemoglobin-oxygen affinity and hemoglobin concentration based on data from humans with hemoglobin mutations. The model predicts that increased hemoglobin-oxygen affinity leads to increased V̇O2 max at altitudes above ~4500 m.


Asunto(s)
Altitud , Oxígeno , Humanos , Consumo de Oxígeno , Arterias , Hemoglobinas
10.
medRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425869

RESUMEN

Objective: This pilot study aimed to assess the efficacy of a 16-week at-home high-intensity interval training (HIIT) program among individuals with spinal cord injury (SCI). Methods: Eight individuals (age: 47±11 (SD) years, 3 females) with SCI below the sixth thoracic vertebrae participated in a 16-week at-home HIIT program using an arm ergometer. Participants completed baseline graded exercise tests to determine target heart rate zones. HIIT was prescribed thrice per week. Each training session consisted of six one-minute bouts with a target heart rate ~80% heart rate reserve (HRR), interspersed with two minutes of recovery at ~30% HRR. A portable heart rate monitor and phone application provided visual feedback during training and allowed for measurements of adherence and compliance. Graded exercise tests were completed after 8 and 16 weeks of HIIT. Surveys were administered to assess participation, self-efficacy, and satisfaction. Results: Participants demonstrated a decrease in submaximal cardiac output (P=0.028) and an increase in exercise capacity (peak power output, P=0.027) following HIIT, indicative of improved exercise economy and maximal work capacity. An 87% adherence rate was achieved during the HIIT program. Participants reached a high intensity of 70% HRR or greater during ~80% of intervals. The recovery HRR target was reached during only ~35% of intervals. Self-reported metrics of satisfaction and self-efficacy with at-home HIIT scored moderate to high. Conclusion: Participants demonstrated an improvement in exercise economy and maximal work capacity following at-home HIIT. Additionally, participant adherence, compliance, satisfaction, and self-efficacy metrics suggest that at-home HIIT was easily implemented and enjoyable.

11.
Nitric Oxide ; 138-139: 105-119, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37438201

RESUMEN

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.

12.
Compr Physiol ; 13(3): 4879-4907, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358508

RESUMEN

In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.


Asunto(s)
Ejercicio Físico , Animales , Humanos , Estados Unidos
13.
Artículo en Inglés | MEDLINE | ID: mdl-37182787

RESUMEN

Studies of animal physiology not only provide valuable knowledge for the species in question, but also offer insights into human physiology. This thought is best highlighted by the 'Krogh Principle', which states "for many problems there is an animal on which it can be most conveniently studied". This graphical review focuses on three distinct stages of the oxygen transport cascade in which human exercise physiology knowledge has been enhanced by studies carried out in animal models. We begin by exploring ventilation, and the detrimental effects of cold, dry air on the airways in two sets of elite athletes, the cross-country skier and the racing sled dog. We then discuss the transport of oxygen via hemoglobin in humans and deer mice with relatively shifted oxygen dissociation curves. Finally, we consider the technical difficulties of measuring respiratory muscle blood flow in exercising humans and how an equine model can provide an understanding of the distribution of blood flow during exercise. These cases illustrate the complementary nature of physiological studies across species.


Asunto(s)
Fisiología Comparada , Fenómenos Fisiológicos Respiratorios , Humanos , Animales , Caballos , Perros , Modelos Animales , Pulmón , Oxígeno
14.
Nitric Oxide ; 136-137: 33-47, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244391

RESUMEN

Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.


Asunto(s)
Beta vulgaris , Nitratos , Humanos , Anciano , Óxido Nítrico/metabolismo , Suplementos Dietéticos , Contracción Muscular , Disponibilidad Biológica , Músculo Esquelético/metabolismo , Método Doble Ciego
15.
Am J Physiol Regul Integr Comp Physiol ; 324(5): R625-R634, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878486

RESUMEN

During hypoxic exposure, humans with high-affinity hemoglobin (and compensatory polycythemia) have blunted increases in heart rate compared with healthy humans with typical oxyhemoglobin dissociation curves. This response may be associated with altered autonomic control of heart rate. Our hypothesis-generating study aimed to investigate cardiac baroreflex sensitivity and heart rate variability among nine humans with high-affinity hemoglobin [6 females, O2 partial pressure at 50% [Formula: see text] (P50) = 16 ± 1 mmHg] compared with 12 humans with typical affinity hemoglobin (6 F, P50 = 26 ± 1 mmHg). Participants breathed normal room air for a 10-min baseline, followed by 20 min of isocapnic hypoxic exposure, designed to lower the arterial partial pressure O2 ([Formula: see text]) to ∼50 mmHg. Beat-by-beat heart rate and arterial blood pressure were recorded. Data were averaged in 5-min periods throughout the hypoxia exposure, beginning with the last 5 min of baseline in normoxia. Spontaneous cardiac baroreflex sensitivity and heart rate variability were determined using the sequence method and the time and frequency domain analyses, respectively. Cardiac baroreflex sensitivity was lower in humans with high-affinity hemoglobin than controls at baseline and during isocapnic hypoxic exposure (normoxia: 7 ± 4 vs. 16 ± 10 ms/mmHg, hypoxia minutes 15-20: 4 ± 3 vs. 14 ± 11 ms/mmHg; group effect: P = 0.02, high-affinity hemoglobin vs. control, respectively). Heart rate variability calculated in both the time (standard deviation of the N-N interval) and frequency (low frequency) domains was lower in humans with high-affinity hemoglobin than in controls (all P < 0.05). Our data suggest that humans with high-affinity hemoglobin may have attenuated cardiac autonomic function.


Asunto(s)
Policitemia , Femenino , Humanos , Corazón , Sistema Nervioso Autónomo , Presión Arterial , Frecuencia Cardíaca/fisiología , Hipoxia , Barorreflejo/fisiología , Presión Sanguínea
17.
Sci Rep ; 12(1): 17970, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289306

RESUMEN

Respiratory epithelium in the conducting airways of the human body is one of the primary targets of SARS-CoV-2 infection, however, there is a paucity of studies describing the association between COVID-19 and physical characteristics of the conducting airways. To better understand the pathophysiology of COVID-19 on the size of larger conducting airways, we determined the luminal area of the central airways in patients with a history of COVID-19 compared to a height-matched cohort of controls using a case-control study design. Using three-dimensional reconstruction from low-dose high-resolution computed tomography, we retrospectively assessed airway luminal cross-sectional area in 114 patients with COVID-19 (66 females, 48 males) and 114 healthy, sex- and height-matched controls (66 females, 48 males). People with a history of smoking, cardiopulmonary disease, or a body mass index greater than 40 kg·m-2 were excluded. Luminal areas of seven conducting airways were analyzed, including trachea, left and right main bronchus, intermediate bronchus, left and right upper lobe, and left lower lobe. For the central conducting airways, luminal area was ~ 15% greater patients with COVID-19 compared to matched controls (p < 0.05). Among patients with COVID-19, there were generally no differences in the luminal areas of the conducting airways between hospitalized patients compared to patients who did not require COVID-19-related hospitalization. Our findings suggest that males and females with COVID-19 have pathologically larger conducting airway luminal areas than healthy, sex- and height-matched controls.


Asunto(s)
COVID-19 , Masculino , Femenino , Humanos , Estudios de Casos y Controles , Estudios Retrospectivos , SARS-CoV-2 , Pulmón/diagnóstico por imagen
18.
Exp Physiol ; 107(8): 854-863, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35603981

RESUMEN

NEW FINDINGS: What is the central question of this study? Do humans with high-affinity haemoglobin (HAH) demonstrate attenuated skeletal muscle deoxygenation during normoxic and hypoxic exercise? What is the main finding and its importance? Examination of near-infrared spectroscopy-derived muscle oxygenation profiles suggests that fractional oxygen extraction is blunted during hypoxic exercise in humans with HAH compared with control subjects. However, muscle tissue oxygen saturation levels were higher in humans with HAH during exercise in normoxia compared with control subjects. These alterations in fractional oxygen extraction in humans with HAH might influence blood flow regulation and exercise capacity during hypoxia. ABSTRACT: Recently, researchers in our laboratory have shown that humans with genetic mutations resulting in high-affinity haemoglobin (HAH) demonstrate better maintained aerobic capacity and peak power output during hypoxic exercise versus normoxic exercise in comparison to humans with normal-affinity haemoglobin. However, the influence of HAH on tissue oxygenation within exercising muscle during normoxia and hypoxia is unknown. Therefore, we examined near-infrared spectroscopy-derived oxygenation profiles of the vastus lateralis during graded cycling exercise in normoxia and hypoxia among humans with HAH (n = 5) and control subjects with normal-affinity haemoglobin (n = 12). The HAH group elicited a blunted increase of deoxygenated haemoglobin + myoglobin during hypoxic exercise compared with the control group (P = 0.03), suggesting reduced fractional oxygen extraction in the HAH group. In addition, the HAH group maintained a higher level of muscle tissue oxygen saturation during normoxic exercise (HAH, 75 ± 4% vs. controls, 65 ± 3%, P = 0.049) and there were no differences between groups in muscle tissue oxygen saturation during hypoxic exercise (HAH, 68 ± 3% vs. controls, 68 ± 2%, P = 0.943). Overall, our results suggest that humans with HAH might demonstrate divergent patterns of fractional oxygen extraction during hypoxic exercise and elevated muscle tissue oxygenation during normoxic exercise compared with control subjects.


Asunto(s)
Ejercicio Físico , Hemoglobinas , Músculo Esquelético , Consumo de Oxígeno , Oxígeno , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Humanos , Hipoxia , Músculo Esquelético/fisiología , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología
19.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35408255

RESUMEN

The application of artificial intelligence (AI) has provided new capabilities to develop advanced medical monitoring sensors for detection of clinical conditions of low circulating blood volume such as hemorrhage. The purpose of this study was to compare for the first time the discriminative ability of two machine learning (ML) algorithms based on real-time feature analysis of arterial waveforms obtained from a non-invasive continuous blood pressure system (Finometer®) signal to predict the onset of decompensated shock: the compensatory reserve index (CRI) and the compensatory reserve metric (CRM). One hundred ninety-one healthy volunteers underwent progressive simulated hemorrhage using lower body negative pressure (LBNP). The least squares means and standard deviations for each measure were assessed by LBNP level and stratified by tolerance status (high vs. low tolerance to central hypovolemia). Generalized Linear Mixed Models were used to perform repeated measures logistic regression analysis by regressing the onset of decompensated shock on CRI and CRM. Sensitivity and specificity were assessed by calculation of receiver-operating characteristic (ROC) area under the curve (AUC) for CRI and CRM. Values for CRI and CRM were not distinguishable across levels of LBNP independent of LBNP tolerance classification, with CRM ROC AUC (0.9268) being statistically similar (p = 0.134) to CRI ROC AUC (0.9164). Both CRI and CRM ML algorithms displayed discriminative ability to predict decompensated shock to include individual subjects with varying levels of tolerance to central hypovolemia. Arterial waveform feature analysis provides a highly sensitive and specific monitoring approach for the detection of ongoing hemorrhage, particularly for those patients at greatest risk for early onset of decompensated shock and requirement for implementation of life-saving interventions.


Asunto(s)
Inteligencia Artificial , Hipovolemia , Algoritmos , Presión Sanguínea/fisiología , Volumen Sanguíneo/fisiología , Frecuencia Cardíaca/fisiología , Hemodinámica , Hemorragia/diagnóstico , Humanos , Hipovolemia/diagnóstico , Aprendizaje Automático
20.
PLoS Med ; 18(12): e1003872, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928960

RESUMEN

BACKGROUND: The United States (US) Expanded Access Program (EAP) to coronavirus disease 2019 (COVID-19) convalescent plasma was initiated in response to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. While randomized clinical trials were in various stages of development and enrollment, there was an urgent need for widespread access to potential therapeutic agents. The objective of this study is to report on the demographic, geographical, and chronological characteristics of patients in the EAP, and key safety metrics following transfusion of COVID-19 convalescent plasma. METHODS AND FINDINGS: Mayo Clinic served as the central institutional review board for all participating facilities, and any US physician could participate as a local physician-principal investigator. Eligible patients were hospitalized, were aged 18 years or older, and had-or were at risk of progression to-severe or life-threatening COVID-19; eligible patients were enrolled through the EAP central website. Blood collection facilities rapidly implemented programs to collect convalescent plasma for hospitalized patients with COVID-19. Demographic and clinical characteristics of all enrolled patients in the EAP were summarized. Temporal patterns in access to COVID-19 convalescent plasma were investigated by comparing daily and weekly changes in EAP enrollment in response to changes in infection rate at the state level. Geographical analyses on access to convalescent plasma included assessing EAP enrollment in all national hospital referral regions, as well as assessing enrollment in metropolitan areas and less populated areas that did not have access to COVID-19 clinical trials. From April 3 to August 23, 2020, 105,717 hospitalized patients with severe or life-threatening COVID-19 were enrolled in the EAP. The majority of patients were 60 years of age or older (57.8%), were male (58.4%), and had overweight or obesity (83.8%). There was substantial inclusion of minorities and underserved populations: 46.4% of patients were of a race other than white, and 37.2% of patients were of Hispanic ethnicity. Chronologically and geographically, increases in the number of both enrollments and transfusions in the EAP closely followed confirmed infections across all 50 states. Nearly all national hospital referral regions enrolled and transfused patients in the EAP, including both in metropolitan and in less populated areas. The incidence of serious adverse events was objectively low (<1%), and the overall crude 30-day mortality rate was 25.2% (95% CI, 25.0% to 25.5%). This registry study was limited by the observational and pragmatic study design that did not include a control or comparator group; thus, the data should not be used to infer definitive treatment effects. CONCLUSIONS: These results suggest that the EAP provided widespread access to COVID-19 convalescent plasma in all 50 states, including for underserved racial and ethnic minority populations. The study design of the EAP may serve as a model for future efforts when broad access to a treatment is needed in response to an emerging infectious disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT#: NCT04338360.


Asunto(s)
COVID-19/terapia , Ensayos de Uso Compasivo/métodos , Necesidades y Demandas de Servicios de Salud/estadística & datos numéricos , Sistemas de Distribución en Hospital/organización & administración , Sistema de Registros , Reacción a la Transfusión/complicaciones , Reacción a la Transfusión/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Minorías Étnicas y Raciales , Femenino , Humanos , Inmunización Pasiva/efectos adversos , Inmunización Pasiva/métodos , Pacientes Internos , Masculino , Área sin Atención Médica , Persona de Mediana Edad , Pandemias , Seguridad del Paciente , SARS-CoV-2 , Resultado del Tratamiento , Estados Unidos , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...