Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37934601

RESUMEN

Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Reguladores , Ratones , Animales , Receptores de Antígenos de Linfocitos T , Péptidos , Tolerancia Inmunológica , Antígenos de Histocompatibilidad Clase I
2.
Proc Natl Acad Sci U S A ; 120(6): e2218915120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730200

RESUMEN

Alzheimer's disease (AD) is the most common form of incurable dementia and represents a critical public health issue as the world's population ages. Although microglial dysregulation is a cardinal feature of AD, the extensive heterogeneity of these immunological cells in the brain has impeded our understanding of their contribution to this disease. Here, we identify a pathogenic microglial subset which expresses the CD11c surface marker as the sole producer of Osteopontin (OPN) in the 5XFAD mouse model of AD. OPN production divides Disease-Associated Microglia (DAM) into two functionally distinct subsets, i.e., a protective CD11c+OPN- subset that robustly ingests amyloid ß (Aß) in a noninflammatory fashion and a pathogenic CD11c+OPN+ subset that produces proinflammatory cytokines and fails to ingest significant amounts of Aß. Genetic ablation of OPN or administration of monoclonal anti-OPN antibody to 5XFAD mice reduces proinflammatory microglia, plaque formation, and numbers of dystrophic neurites and results in improved cognitive function. Analysis of brain tissue from AD patients indicates that levels of OPN-producing CD11c+ microglia correlate strongly with the degree of cognitive deficit and AD neuropathology. These findings define an OPN-dependent pathway to disease driven by a distinct microglial subset, and identify OPN as a novel therapeutic target for potentially effective immunotherapy to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Osteopontina/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Placa Amiloide/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(18): e2200757119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35482921

RESUMEN

Regulatory T cells (Treg) can impede antitumor immunity and currently represent a major obstacle to effective cancer immunotherapy. Targeting tumor-infiltrating regulatory Treg while sparing systemic Treg represents an optimal approach to this problem. Here, we provide evidence that the interleukin 23 receptor (IL23R) expressed by tumor-infiltrating Treg promotes suppressive activity. Disruption of the IL23R results in increased responsiveness of destabilized Treg to the IL12 cytokine, the production of γ-interferon, and the recruitment of CD8 T cells that inhibit tumor growth. Since the Treg destabilization pathway that is initiated by IL23R blockade is distinct and independent from the destabilization pathway coupled to glucocorticoid-induced TNFR-related protein (GITR) activation, we examined the impact of the coordinate induction of the two destabilization pathways on antitumor immune responses. Combined GITR and IL23R antibody treatment of mice inoculated with MC38 tumors resulted in robust and synergistic antitumor responses. These findings indicate that the delineation of independent Treg destabilization pathways may allow improved approaches to the development of combination immunotherapy for cancers.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Anticuerpos Bloqueadores , Humanos , Factores Inmunológicos/metabolismo , Inmunoterapia , Interleucina-23/metabolismo , Neoplasias/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177477

RESUMEN

Expression of Itgax (encoding the CD11c surface protein) and Spp1 (encoding osteopontin; OPN) has been associated with activated microglia that can develop in healthy brains and some neuroinflammatory disorders. However, whether CD11c and OPN expression is a consequence of microglial activation or represents a portion of the genetic program expressed by a stable microglial subset is unknown. Here, we show that OPN production in the brain is confined to a small CD11c+ microglial subset that differentiates from CD11c- precursors in perinatal life after uptake of apoptotic neurons. Our analysis suggests that coexpression of OPN and CD11c marks a microglial subset that is expressed at birth and persists into late adult life, independent of environmental activation stimuli. Analysis of the contribution of OPN to the intrinsic functions of this CD11c+ microglial subset indicates that OPN is required for subset stability and the execution of phagocytic and proinflammatory responses, in part through OPN-dependent engagement of the αVß3-integrin receptor. Definition of OPN-producing CD11c+ microglia as a functional microglial subset provides insight into microglial differentiation in health and disease.


Asunto(s)
Antígenos CD11/metabolismo , Microglía/fisiología , Osteopontina/metabolismo , Animales , Encéfalo/metabolismo , Antígenos CD11/genética , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Osteopontina/genética , Fagocitos/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA