Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
PLoS One ; 17(5): e0267195, 2022.
Article En | MEDLINE | ID: mdl-35551278

BACKGROUND: Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). METHODS: Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. RESULTS: Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. CONCLUSION: Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.


Mycobiome , Pulmonary Disease, Chronic Obstructive , Anti-Bacterial Agents , Bronchoalveolar Lavage Fluid , Humans , Longitudinal Studies , Lung
2.
Front Microbiol ; 13: 822243, 2022.
Article En | MEDLINE | ID: mdl-35250938

OBJECTIVES: Biofilm formation has been demonstrated in muscle and soft tissue samples from patients with necrotizing soft tissue infection (NSTI) caused by Streptococcus pyogenes, but the clinical importance of this observation is not clear. Although M-protein has been shown to be important for in vitro biofilm formation in S. pyogenes, the evidence for an association between emm type and biofilm forming capacity is conflicting. Here we characterize the biofilm forming capacity in a collection of S. pyogenes isolates causing NSTI, and relate this to emm type of the isolates and clinical characteristics of the patients. METHODS: Bacterial isolates and clinical data were obtained from NSTI patients enrolled in a multicenter prospective observational study. Biofilm forming capacity was determined using a microtiter plate assay. RESULTS: Among 57 cases, the three most frequently encountered emm types were emm1 (n = 22), emm3 (n = 13), and emm28 (n = 7). The distribution of biofilm forming capacity in emm1 was qualitatively (narrow-ranged normal distribution) and quantitatively (21/22 isolates in the intermediate range) different from other emm types (wide ranged, multimodal distribution with 5/35 isolates in the same range as emm1). There were no significant associations between biofilm forming capacity and clinical characteristics of the patients. CONCLUSIONS: The biofilm forming capacity of emm1 isolates was uniform and differed significantly from other emm types. The impact of biofilm formation in NSTI caused by S. pyogenes on clinical outcomes remains uncertain.

3.
BMC Pulm Med ; 21(1): 342, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34727907

OBJECTIVE: Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). METHODS: 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. RESULTS: A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. CONCLUSION: The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.


Bronchoalveolar Lavage Fluid/microbiology , Lung Diseases, Obstructive/microbiology , Microbiota , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage , Bronchoscopy , Classification , Humans , Lung Diseases, Obstructive/drug therapy , Male , Microbiota/drug effects , Middle Aged , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Anaerobe ; 72: 102449, 2021 Dec.
Article En | MEDLINE | ID: mdl-34543761

BACKGROUND: The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS: We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS: The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS: The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.


Bacterial Proteins/metabolism , Bacteroidaceae Infections/microbiology , Biofilms , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/metabolism , Porphyromonas gingivalis/metabolism , Proteome , Proteomics/methods , Chromatography, Liquid , Computational Biology/methods , Data Analysis , Humans , Mass Spectrometry , Microbiota , Mouth/microbiology , Virulence Factors
5.
Antibodies (Basel) ; 10(3)2021 Aug 26.
Article En | MEDLINE | ID: mdl-34462410

Tuberculosis (TB) is a global health problem. The immunohistochemistry (IHC)-based MPT64 antigen detection test has shown promising results for diagnosing extrapulmonary TB in previous studies. However, the anti-MPT64 antibody currently used in the test is in limited supply, and reproduction of a functional antibody is a prerequisite for further large-scale use. Various antigen-adjuvant combinations and immunisation protocols were tested in mice and rabbits to generate monoclonal and polyclonal antibodies. Antibodies were screened in IHC, and the final new antibody was validated on clinical human specimens. We were not able to generate monoclonal antibodies that were functional in IHC, but we obtained multiple functional polyclonal antibodies through careful selection of antigen-adjuvant and comprehensive screening in IHC of both pre-immune sera and antisera. To overcome the limitation of batch-to-batch variability with polyclonal antibodies, the best performing individual polyclonal antibodies were pooled to one final large-volume new anti-MPT64 antibody. The sensitivity of the new antibody was in the same range as the reference antibody, while the specificity was somewhat reduced. Our results suggest that it possible to reproduce a large-volume functional polyclonal antibody with stable performance, thereby securing stable supplies and reproducibility of the MPT64 test, albeit further validation remains to be done.

6.
BMC Genomics ; 22(1): 3, 2021 Jan 04.
Article En | MEDLINE | ID: mdl-33397283

BACKGROUND: Studies on the airway microbiome have been performed using a wide range of laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. We sought to determine the impact of number of polymerase chain reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) on the presentation of the upper and lower airway microbiome. Our analyses included lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). Samples included oral wash, protected specimen brushes and protected bronchoalveolar lavage (healthy and obstructive lung disease), and negative controls. RESULTS: The number of sequences and amplicon sequence variants (ASV) decreased in order setup1 > setup2 > setup3. This trend appeared to be associated with an increased taxonomic resolution when sequencing the V3 V4 region (setup 1) and an increased number of small ASVs in setups 1 and 2. The latter was considered a result of contamination in the two-step PCR protocols as well as sequencing across multiple runs (setup 1). Although genera Streptococcus, Prevotella, Veillonella and Rothia dominated, differences in relative abundance were observed across all setups. Analyses of beta-diversity revealed that while oral wash samples (high biomass) clustered together regardless of number of PCR steps, samples from the lungs (low biomass) separated. The removal of contaminants identified using the Decontam package in R, did not resolve differences in results between sequencing setups. CONCLUSIONS: Differences in number of PCR steps will have an impact of final bacterial community descriptions, and more so for samples of low bacterial load. Our findings could not be explained by differences in contamination levels alone, and more research is needed to understand how variations in PCR-setups and reagents may be contributing to the observed protocol bias.


Microbiota , DNA, Bacterial , Genes, rRNA , High-Throughput Nucleotide Sequencing , Microbiota/genetics , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Proteomics ; 21(2): e2000072, 2021 01.
Article En | MEDLINE | ID: mdl-33025732

Escherichia coli and Shigella spp. causing illnesses in humans represent a genotypically and phenotypically diverse group of pathogens. Although E. coli diversity has been studied by comparative genomics, the intra-species variation at the proteome level is currently unknown. The proteomes of 16 pathogenic E. coli, 2 non-pathogenic E. coli, and 5 Shigella strains originating from 18 phylogenetic lineages are investigated. By applying label-free quantitative proteomics on trypsin-digested cell extracts from bacteria grown on blood agar, 4018 proteins are detected, 3285 of which arequantified, and 261 represented virulence factors. Of 753 proteins quantified in all strains, the levels of 153 vary substantially between strains and are functionally associated mostly with stress response and peripheral metabolism. The levels of proteins associated with the central metabolism vary considerably less than the levels of proteins from other metabolic pathways. Hierarchical clustering analysis based on the protein levels results in strains grouping that differ from that obtained by gene-based phylogenetic analysis. Finally, strains of some E. coli pathotypes have more similar protein profiles even when the strains are not genetically closely related. The results suggest that the degree of genetic relatedness may not necessarily be a good predictor of E. coli phenotypic characteristics.


Escherichia coli , Shigella , Escherichia coli Infections , Escherichia coli Proteins/genetics , Humans , Phylogeny , Proteomics
8.
ERJ Open Res ; 6(3)2020 Jul.
Article En | MEDLINE | ID: mdl-32904583

AIM: The aim of this study was to investigate whether the compositionality of the lower airway microbiota predicts later exacerbation risk in persons with COPD in a cohort study. MATERIALS AND METHODS: We collected lower airways microbiota samples by bronchoalveolar lavage and protected specimen brushes, and oral wash samples from 122 participants with COPD. Bacterial DNA was extracted from all samples, before we sequenced the V3-V4 region of the 16S RNA gene. The frequency of moderate and severe COPD exacerbations was surveyed in telephone interviews and in a follow-up visit. Compositional taxonomy and α and ß diversity were compared between participants with and without later exacerbations. RESULTS: The four most abundant phyla were Firmicutes, Bacteroidetes, Proteobacteria and Fusobacteria in both groups, and the four most abundant genera were Streptococcus, Veillonella, Prevotella and Gemella. The relative abundances of different taxa showed a large variation between samples and individuals, and no statistically significant difference of either compositional taxonomy, or α or ß diversity could be found between participants with and without COPD exacerbations within follow-up. CONCLUSION: The findings from the current study indicate that individual differences in the lower airway microbiota in persons with COPD far outweigh group differences between frequent and nonfrequent COPD exacerbators, and that the compositionality of the microbiota is so complex as to present large challenges for use as a biomarker of later exacerbations.

9.
BMC Infect Dis ; 20(1): 130, 2020 Feb 12.
Article En | MEDLINE | ID: mdl-32050915

BACKGROUND: Extrapulmonary tuberculosis (EPTB) poses diagnostic challenges due to the paucibacillary nature of the disease. The immunochemistry-based MPT64 antigen detection test (MPT64 test) has shown promising results for diagnosing EPTB in previous studies performed in low-resource settings, with higher sensitivity than microscopy and culture. The aim of this study was to investigate the performance of the MPT64 test in a routine clinical setting in a high-income low TB prevalence country. METHODS: Extrapulmonary samples sent for TB diagnostics to microbiology and pathology laboratories at three regional tertiary care hospitals in Norway in a one-year period were included and subjected to the MPT64 test in parallel to the routine TB diagnostic tests. RESULTS: Samples from 288 patients were included and categorised as confirmed TB cases (n = 26), clinically diagnosed TB cases (n = 5), non-TB cases (n = 243) and uncategorised (n = 14), using a composite reference standard (CRS). In formalin-fixed biopsies, the sensitivity (95% CI) of the MPT64 test, microscopy, PCR-based tests pooled, and culture was 37% (16-62), 20% (4-48), 37% (16-62) and 50% (23-77), respectively, against the CRS. The MPT64 test showed a good positive predictive value (88%) and an excellent specificity (99, 95% CI 92-100) in formalin-fixed biopsies. In fine-needle aspirates, pus and fluid samples, the test performance was lower. CONCLUSIONS: The MPT64 test was implementable in pathology laboratories as part of routine diagnostics, and although the sensitivity of the MPT64 test was not better than culture in this setting, the test supplements other rapid diagnostic methods, including microscopy and PCR-based tests, and can contribute to strengthen the diagnosis of EPTB in formalin-fixed biopsies in the absence of culture confirmation.


Antigens, Bacterial/immunology , Immunologic Tests/methods , Tuberculosis/diagnosis , Adult , Biopsy, Fine-Needle , Female , Humans , Income , Male , Microscopy , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Norway/epidemiology , Polymerase Chain Reaction , Prevalence , Sensitivity and Specificity , Tuberculosis/epidemiology
10.
Scand J Immunol ; 91(4): e12866, 2020 Apr.
Article En | MEDLINE | ID: mdl-31960452

Understanding mechanisms of cavitation in tuberculosis (TB) is the missing link that could advance the field towards better control of the infection. Descriptions of human TB suggest that postprimary TB begins as lipid pneumonia of foamy macrophages that undergoes caseating necrosis and fragmentation to produce cavities. This study aimed to investigate the various mycobacterial antigens accumulating in foamy macrophages and their relation to tissue destruction and necrosis. Pulmonary tissues from mice with slowly progressive TB were studied for histopathology, acid-fast bacilli (AFB) and presence of mycobacterial antigens. Digital quantification using Aperio ImageScope was done. Until week 12 postinfection, mice were healthy, and lesions were small with scarce AFB and mycobacterial antigens. Colony-forming units (CFUs) increased exponentially. At week 16-33, mice were sick, macrophages attained foamy appearance with an increase in antigens (P < .05), 1.5 log increase in CFUs and an approximately onefold increase in AFB. At week 37-41, mice started dying with a shift in morphology towards necrosis. A >20-fold increase in mycobacterial antigens was observed with only less than one log increase in CFUs and sevenfold increase in AFB. Secreted antigens were significantly (P < .05) higher compared to cell-wall antigens throughout infection. Focal areas of necrosis were associated with an approximately 40-fold increase in antigen MPT46, functionally active thioredoxin, and a significant increase in all secreted antigens. In conclusion, mycobacterial antigens accumulate in the foamy macrophages in TB lesions during slowly progressive murine pulmonary TB. Secreted antigens and MPT46 correlated with necrosis, thereby implying that they might trigger the formation of cavities.


Antigens, Bacterial/immunology , Foam Cells/immunology , Foam Cells/microbiology , Tuberculosis, Pulmonary/pathology , Animals , Foam Cells/pathology , Mice , Mycobacterium tuberculosis , Necrosis , Tuberculosis, Pulmonary/immunology
11.
PLoS One ; 14(9): e0222449, 2019.
Article En | MEDLINE | ID: mdl-31527888

BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) are debilitating events and spur disease progression. Infectious causes are frequent; however, it is unknown to what extent exacerbations are caused by larger shifts in the airways' microbiota. The aim of the current study was to analyse the changes in microbial composition between stable state and during exacerbations, and the corresponding immune response. METHODS: The study sample included 36 COPD patients examined at stable state and exacerbation from the Bergen COPD Cohort and Exacerbations studies, and one patient who delivered sputum on 13 different occasions during the three-year study period. A physician examined the patients at all time points, and sputum induction was performed by stringent protocol. Only induced sputum samples were used in the current study, not spontaneously expectorated sputum. Sputum inflammatory markers (IL-6, IL-8, IL-18, IP-10, MIG, TNF-α) and antimicrobial peptides (AMPs, i.e. LL-37/hCAP-18, SLPI) were measured in supernatants, whereas target gene sequencing (16S rRNA) was performed on corresponding cell pellets. The microbiome bioinformatics platform QIIME2TM and the statistics environment R were applied for bioinformatics analyses. RESULTS: Levels of IP-10, MIG, TNF-α and AMPs were significantly different between the two disease states. Of 36 sample pairs, 24 had significant differences in the 12 most abundant genera between disease states. The diversity was significantly different in several individuals, but not when data was analysed on a group level. The one patient case study showed longitudinal dynamics in microbiota unrelated to disease state. CONCLUSION: Changes in the sputum microbiota with changing COPD disease states are common, and are accompanied by changes in inflammatory markers. However, the changes are highly individual and heterogeneous events.


Inflammation/pathology , Microbiota/genetics , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/pathology , Adult , Aged , Antimicrobial Cationic Peptides/metabolism , Biomarkers/metabolism , Cohort Studies , Cytokines/metabolism , Disease Progression , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Ribosomal, 16S/genetics , Respiratory System/microbiology , Respiratory System/pathology , Sputum
12.
BMC Microbiol ; 19(1): 187, 2019 08 14.
Article En | MEDLINE | ID: mdl-31412780

BACKGROUND: The low bacterial load in samples acquired from the lungs, have made studies on the airway microbiome vulnerable to contamination from bacterial DNA introduced during sampling and laboratory processing. We have examined the impact of laboratory contamination on samples collected from the lower airways by protected (through a sterile catheter) bronchoscopy and explored various in silico approaches to dealing with the contamination post-sequencing. Our analyses included quantitative PCR and targeted amplicon sequencing of the bacterial 16S rRNA gene. RESULTS: The mean bacterial load varied by sample type for the 23 study subjects (oral wash>1st fraction of protected bronchoalveolar lavage>protected specimen brush>2nd fraction of protected bronchoalveolar lavage; p < 0.001). By comparison to a dilution series of know bacterial composition and load, an estimated 10-50% of the bacterial community profiles for lower airway samples could be traced back to contaminating bacterial DNA introduced from the laboratory. We determined the main source of laboratory contaminants to be the DNA extraction kit (FastDNA Spin Kit). The removal of contaminants identified using tools within the Decontam R package appeared to provide a balance between keeping and removing taxa found in both negative controls and study samples. CONCLUSIONS: The influence of laboratory contamination will vary across airway microbiome studies. By reporting estimates of contaminant levels and taking use of contaminant identification tools (e.g. the Decontam R package) based on statistical models that limit the subjectivity of the researcher, the accuracy of inter-study comparisons can be improved.


Bacteria/isolation & purification , Microbiota , Respiratory System/microbiology , Aged , Air Microbiology , Bacteria/classification , Bacteria/genetics , Bacterial Load , Bronchoalveolar Lavage , DNA, Bacterial/genetics , Equipment Contamination , Female , Humans , Laboratories/statistics & numerical data , Male , Middle Aged , RNA, Ribosomal, 16S/genetics
13.
Front Microbiol ; 10: 1410, 2019.
Article En | MEDLINE | ID: mdl-31281302

In proteomics, peptide information within mass spectrometry (MS) data from a specific organism sample is routinely matched against a protein sequence database that best represent such organism. However, if the species/strain in the sample is unknown or genetically poorly characterized, it becomes challenging to determine a database which can represent such sample. Building customized protein sequence databases merging multiple strains for a given species has become a strategy to overcome such restrictions. However, as more genetic information is publicly available and interesting genetic features such as the existence of pan- and core genes within a species are revealed, we questioned how efficient such merging strategies are to report relevant information. To test this assumption, we constructed databases containing conserved and unique sequences for 10 different species. Features that are relevant for probabilistic-based protein identification by proteomics were then monitored. As expected, increase in database complexity correlates with pangenomic complexity. However, Mycobacterium tuberculosis and Bordetella pertussis generated very complex databases even having low pangenomic complexity. We further tested database performance by using MS data from eight clinical strains from M. tuberculosis, and from two published datasets from Staphylococcus aureus. We show that by using an approach where database size is controlled by removing repeated identical tryptic sequences across strains/species, computational time can be reduced drastically as database complexity increases.

14.
J Proteome Res ; 17(1): 325-336, 2018 01 05.
Article En | MEDLINE | ID: mdl-29185342

Enterotoxigenic Escherichia coli (ETEC) infections are an important cause of diarrhea among young children living in low- and middle-income countries and visiting travelers. The development of effective vaccines is complicated by substantial genomic diversity that exists among ETEC isolates. To investigate how ETEC genomic variation is reflected at expressed proteome level, we applied label-free quantitative proteomics to seven human ETEC strains representing five epidemiologically important lineages. We further determined the proteome profile of the nonpathogenic E. coli B strain BL21(DE3) to discriminate features specific for ETEC. The analysis yielded a data set of 2893 proteins, of which 1729 were present in all strains. Each ETEC strain produced on average 27 plasmid- or chromosomally-encoded proteins with known or putative connections to virulence, and a number of strain-specific proteins associated with the biosynthesis of surface antigens. Statistical comparison of protein levels between the ETEC strains and BL21(DE3) revealed several proteins with considerably increased levels only in BL21(DE3) including enzymes of arginine biosynthesis and metabolism of melibiose, galactitol, and gluconate. ETEC strains displayed consistently increased levels of proteins that were functional in iron acquisition, maltose metabolism, and acid resistance. The latter results suggest that specific metabolic functions might be shared among ETEC isolates.


Enterotoxigenic Escherichia coli/chemistry , Escherichia coli Proteins/analysis , Membrane Proteins/biosynthesis , Proteomics/methods , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Infections , Escherichia coli Proteins/metabolism , Humans , Species Specificity
15.
ERJ Open Res ; 3(3)2017 Jul.
Article En | MEDLINE | ID: mdl-28875147

The aim was to evaluate susceptibility of oropharyngeal contamination with various bronchoscopic sampling techniques. 67 patients with obstructive lung disease and 58 control subjects underwent bronchoscopy with small-volume lavage (SVL) through the working channel, protected bronchoalveolar lavage (PBAL) and bilateral protected specimen brush (PSB) sampling. Subjects also provided an oral wash (OW) sample, and negative control samples were gathered for each bronchoscopy procedure. DNA encoding bacterial 16S ribosomal RNA was sequenced and bioinformatically processed to cluster into operational taxonomic units (OTU), assign taxonomy and obtain measures of diversity. The proportion of Proteobacteria increased, whereas Firmicutes diminished in the order OW, SVL, PBAL, PSB (p<0.01). The alpha-diversity decreased in the same order (p<0.01). Also, beta-diversity varied by sampling method (p<0.01), and visualisation of principal coordinates analyses indicated that differences in diversity were smaller between OW and SVL and OW and PBAL samples than for OW and the PSB samples. The order of sampling (left versus right first) did not influence alpha- or beta-diversity for PSB samples. Studies of the airway microbiota need to address the potential for oropharyngeal contamination, and protected sampling might represent an acceptable measure to minimise this problem.

16.
Respir Res ; 18(1): 164, 2017 08 29.
Article En | MEDLINE | ID: mdl-28851370

BACKGROUND: Induced and spontaneous sputum are used to evaluate the airways microbiota. Whether the sputum types can be used interchangeably in microbiota research is unknown. Our aim was to compare microbiota in induced and spontaneous sputum from COPD patients sampled during the same consultation. METHODS: COPD patients from Bergen, Norway, were followed between 2006/2010, examined during the stable state and exacerbations. 30 patients delivered 36 sample pairs. DNA was extracted by enzymatic and mechanical lysis methods. The V3-V4 region of the 16S rRNA gene was PCR-amplified and prepared for paired-end sequencing. Illumina Miseq System was used for sequencing, and Quantitative Insights Into Microbial Ecology (QIIME) and Stata were used for bioinformatics and statistical analyses. RESULTS: Approximately 4 million sequences were sorted into 1004 different OTUs and further assigned to 106 different taxa. Pair-wise comparison of both taxonomic composition and beta-diversity revealed significant differences in one or both parameters in 1/3 of sample pairs. Alpha-diversity did not differ. Comparing abundances for each taxa identified, showed statistically significant differences between the mean abundances in induced versus spontaneous samples for 15 taxa when disease state was considered. This included potential pathogens like Haemophilus and Moraxella. CONCLUSION: When studying microbiota in sputum samples one should take into consideration how samples are collected and avoid the usage of both induced and spontaneous sputum in the same study.


Microbiota/physiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/microbiology , Sputum/microbiology , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , Norway/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnosis
17.
Anaerobe ; 44: 133-142, 2017 Apr.
Article En | MEDLINE | ID: mdl-28285095

The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development.


Bacterial Proteins/analysis , Biofilms/growth & development , Extracellular Matrix/chemistry , Fusobacterium nucleatum/physiology , Porphyromonas gingivalis/physiology , Proteome/analysis , Chromatography, Liquid , Computational Biology , Fusobacterium nucleatum/growth & development , Fusobacterium nucleatum/metabolism , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/metabolism , Proteomics , Tandem Mass Spectrometry
18.
BMC Infect Dis ; 17(1): 147, 2017 02 15.
Article En | MEDLINE | ID: mdl-28201995

BACKGROUND: Streptococcus equi subsp. zooepidemicus is a beta-hemolytic group C streptococcus mainly causing infections in domesticated animals. Here we describe the first case of zoonotic necrotizing myositis caused by this bacterium. CASE PRESENTATION: The patient was a 73-year-old, previously healthy farmer with two asymptomatic Shetland ponies in his stable. After close contact with the ponies while feeding them, he rapidly developed erythema of his left thigh and sepsis with multiple organ failure. The clinical course was severe and complicated, requiring repetitive surgical excision of necrotic muscle, treatment with vasopressors, mechanical ventilation and continuous venovenous hemofiltration, along with adjunctive hyperbaric oxygen therapy. The patient was discharged from hospital at day 30, without obvious sequelae. The streptococcal isolate was identified as Streptococcus equi by MALDI-ToF MS, and was later assigned subspecies identification as S. equi subsp. zooepidemicus. Multilocus sequence typing identified the strain as a novel sequence type (ST 364), closely related to types previously identified in horses and cattle. A focused proteomic analysis revealed that the ST 364 expressed putative virulence factors similar to that of Streptococcus pyogenes, including homologues of the M protein, streptodornases, interleukin 8-protease and proteins involved in the biosynthesis of streptolysin S. CONCLUSION: This case illustrates the zoonotic potential of S. equi subsp. zooepidemicus and the importance of early clinical recognition, rapid and radical surgical therapy, appropriate antibiotics and adequate supportive measures when necrotizing soft tissue infection is suspected. The expression of Streptococcus pyogenes-like putative virulence determinants in ST 364 might partially explain the fulminant clinical picture.


Dermatomyositis/microbiology , Fasciitis, Necrotizing/microbiology , Horse Diseases/microbiology , Multiple Organ Failure/microbiology , Streptococcal Infections/microbiology , Streptococcus equi/pathogenicity , Aged , Animal Husbandry , Animals , Dermatomyositis/immunology , Dermatomyositis/therapy , Farmers , Fasciitis, Necrotizing/therapy , Hemofiltration , Horse Diseases/immunology , Horses , Humans , Hyperbaric Oxygenation , Male , Multilocus Sequence Typing , Multiple Organ Failure/therapy , Streptococcal Infections/therapy , Streptococcal Infections/veterinary , Streptococcus equi/immunology , Treatment Outcome , Vasoconstrictor Agents/therapeutic use , Zoonoses
19.
Appl Immunohistochem Mol Morphol ; 25(4): 282-288, 2017 04.
Article En | MEDLINE | ID: mdl-26766121

BACKGROUND: Extrapulmonary tuberculosis (EPTB) constitutes about 15% to 20% of all cases of tuberculosis (TB). The confirmation of EPTB has always been a challenge to laboratory personnel. We aim to evaluate the diagnostic potential of immunostaining with anti-MPT64 in various EPTB specimens. MATERIALS AND METHODS: We studied a total of 51 TB cases and 38 non-TB control specimens comprising of fine-needle aspirates and formalin-fixed biopsies. These were investigated using a combination of the Ziehl-Neelsen method, the Lowenstein-Jensen culture, immunostaining with anti-MPT64 and anti-BCG, and nested-polymerase chain reaction (PCR) for IS6110. Results of all the tests were compared using nested-PCR as the gold standard. RESULTS: Diagnostic validation of immunostaining for anti-MPT64 was performed using nested-PCR as the gold standard. The overall sensitivity, specificity, and positive and negative predictive values for immunostaining with anti-MPT64 were 100%, 97%, 97%, and 100%, respectively. CONCLUSIONS: Immunostaining using anti-MPT64 is a rapid and sensitive method for establishing an early and specific diagnosis of Mycobacterium tuberculosis infection. The technique is simple to be incorporated into routine pathology laboratories.


Antigens, Bacterial/immunology , Lymph Nodes/pathology , Mycobacterium tuberculosis/physiology , Pleura/pathology , Tuberculosis/diagnosis , Biopsy, Fine-Needle , Humans , Immunohistochemistry , Lymph Nodes/microbiology , Pleura/microbiology , Predictive Value of Tests , Sensitivity and Specificity
20.
Mol Cell Proteomics ; 15(9): 2890-907, 2016 09.
Article En | MEDLINE | ID: mdl-27364158

One of the trademarks of extraintestinal pathogenic Escherichia coli is adaptation of metabolism and basic physiology to diverse host sites. However, little is known how this common human pathogen adapts to permit survival and growth in blood. We used label-free quantitative proteomics to characterize five E. coli strains purified from clinical blood cultures associated with sepsis and urinary tract infections. Further comparison of proteome profiles of the clinical strains and a reference uropathogenic E. coli strain 536 cultivated in blood culture and on two different solid media distinguished cellular features altered in response to the pathogenically relevant condition. The analysis covered nearly 60% of the strains predicted proteomes, and included quantitative description based on label-free intensity scores for 90% of the detected proteins. Statistical comparison of anaerobic and aerobic blood cultures revealed 32 differentially expressed proteins (1.5% of the shared proteins), mostly associated with acquisition and utilization of metal ions critical for anaerobic or aerobic respiration. Analysis of variance identified significantly altered amounts of 47 proteins shared by the strains (2.7%), including proteins involved in vitamin B6 metabolism and virulence. Although the proteomes derived from blood cultures were fairly similar for the investigated strains, quantitative proteomic comparison to the growth on solid media identified 200 proteins with substantially changed levels (11% of the shared proteins). Blood culture was characterized by up-regulation of anaerobic fermentative metabolism and multiple virulence traits, including cell motility and iron acquisition. In a response to the growth on solid media there were increased levels of proteins functional in aerobic respiration, catabolism of medium-specific carbon sources and protection against oxidative and osmotic stresses. These results demonstrate on the expressed proteome level that expression of extraintestinal virulence factors and overall cellular metabolism closely reflects specific growth conditions. Data are available via ProteomeXchange with identifier PXD002912.


Escherichia coli Infections/microbiology , Extraintestinal Pathogenic Escherichia coli/growth & development , Proteomics/methods , Sepsis/microbiology , Virulence Factors/metabolism , Aerobiosis , Anaerobiosis , Blood Culture , Energy Metabolism , Escherichia coli Proteins/metabolism , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Gene Expression Regulation, Bacterial , Humans , Protein Interaction Maps , Vitamin B 6/metabolism
...