Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Mov Disord ; 37(2): 375-383, 2022 02.
Article En | MEDLINE | ID: mdl-34636445

BACKGROUND: In a large pedigree with an unusual phenotype of spastic paraplegia or dystonia and autosomal dominant inheritance, linkage analysis previously mapped the disease to chromosome 2q24-2q31. OBJECTIVE: The aim of this study is to identify the genetic cause and molecular basis of an unusual autosomal dominant spastic paraplegia and dystonia. METHODS: Whole exome sequencing following linkage analysis was used to identify the genetic cause in a large family. Cosegregation analysis was also performed. An additional 384 individuals with spastic paraplegia or dystonia were screened for pathogenic sequence variants in the adenosine triphosphate (ATP) synthase membrane subunit C locus 3 gene (ATP5MC3). The identified variant was submitted to the "GeneMatcher" program for recruitment of additional subjects. Mitochondrial functions were analyzed in patient-derived fibroblast cell lines. Transgenic Drosophila carrying mutants were studied for movement behavior and mitochondrial function. RESULTS: Exome analysis revealed a variant (c.318C > G; p.Asn106Lys) (NM_001689.4) in ATP5MC3 in a large family with autosomal dominant spastic paraplegia and dystonia that cosegregated with affected individuals. No variants were identified in an additional 384 individuals with spastic paraplegia or dystonia. GeneMatcher identified an individual with the same genetic change, acquired de novo, who manifested upper-limb dystonia. Patient fibroblast studies showed impaired complex V activity, ATP generation, and oxygen consumption. Drosophila carrying orthologous mutations also exhibited impaired mitochondrial function and displayed reduced mobility. CONCLUSION: A unique form of familial spastic paraplegia and dystonia is associated with a heterozygous ATP5MC3 variant that also reduces mitochondrial complex V activity.


Dystonia , Dystonic Disorders , Spastic Paraplegia, Hereditary , Dystonia/genetics , Dystonic Disorders/genetics , Humans , Mutation/genetics , Paraplegia/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics
2.
Ann Neurol ; 91(2): 225-237, 2022 02.
Article En | MEDLINE | ID: mdl-34954817

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/genetics , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Dystonia/enzymology , Dystonia/genetics , Epilepsy/genetics , Genetic Variation , Humans , Mitochondria/genetics , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Models, Molecular , Mutation , Mutation, Missense , Pedigree , Phenotype , Proteomics , Exome Sequencing
3.
Mov Disord ; 36(8): 1959-1964, 2021 08.
Article En | MEDLINE | ID: mdl-33949708

BACKGROUND: Despite the established value of genomic testing strategies, practice guidelines for their use do not exist in many indications. OBJECTIVES: We sought to validate a recently introduced scoring algorithm for dystonia, predicting the diagnostic utility of whole-exome sequencing (WES) based on individual phenotypic aspects (age-at-onset, body distribution, presenting comorbidity). METHODS: We prospectively enrolled a set of 209 dystonia-affected families and obtained summary scores (0-5 points) according to the algorithm. Singleton (N = 146), duo (N = 11), and trio (N = 52) WES data were generated to identify genetic diagnoses. RESULTS: Diagnostic yield was highest (51%) among individuals with a summary score of 5, corresponding to a manifestation of early-onset segmental or generalized dystonia with coexisting non-movement disorder-related neurological symptoms. Sensitivity and specificity at the previously suggested threshold for implementation of WES (3 points) was 96% and 52%, with area under the curve of 0.81. CONCLUSIONS: The algorithm is a useful predictive tool and could be integrated into dystonia routine diagnostic protocols. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Dystonia , Dystonic Disorders , Parkinson Disease , Algorithms , Dystonia/diagnosis , Dystonia/genetics , Dystonic Disorders/genetics , Genetic Testing , Humans
4.
BMC Pediatr ; 21(1): 174, 2021 04 14.
Article En | MEDLINE | ID: mdl-33853553

BACKGROUND: Childhood hypoglycemia in combination with hepatomegaly is suspicious for inborn errors of metabolism. Cystic fibrosis typically presents with failure to thrive, pulmonary and gastrointestinal symptoms. Hepatic involvement and hypoglycemia can occur in a significant number of patients, although hepatomegaly is uncommon. CASE PRESENTATION: A 28 months old boy was presented with recurrent upper airways infections, progressive lethargy and weight loss. Clinically hepatomegaly was the main presenting feature and hypoglycemia (minimum 1.4 mmol/l) was noted as were elevated transaminases. The patient did not produce enough sweat to analyze it. Infectious causes for hepatitis were excluded and a broad metabolic work-up initiated. A therapy with starch was initiated to control hypoglycemia. In further course loose stools were reported and pancreatic elastase was found to be reduced. A further sweat test yielded pathological chloride concentration and genetic testing confirmed the diagnosis of cystic fibrosis. CONCLUSIONS: Cystic fibrosis is a systemic disease and less common presentations need to be considered. Even in the age of CF-newborn screening in many countries CF needs to be ruled out in typical and atypical clinical presentations and diagnostics need to be repeated if inconclusive.


Cystic Fibrosis , Child , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Testing , Humans , Infant, Newborn , Neonatal Screening
5.
PLoS One ; 5(10): e13513, 2010 Oct 20.
Article En | MEDLINE | ID: mdl-20976001

Human patients with myoclonic epilepsy with ragged-red fibers (MERRF) suffer from regionalized pathology caused by a mutation in the mitochondrial DNA (m.8344A→G). In MERRF-syndrome brain and skeletal muscles are predominantly affected, despite mtDNA being present in any tissue. In the past such tissue-specificity could not be explained by varying mtDNA mutation loads. In search for a region-specific pathology in human individuals we determined the mtDNA/nDNA ratios along with the mutation loads in 43 different post mortem tissue samples of a 16-year-old female MERRF patient and in four previously healthy victims of motor vehicle accidents. In brain and muscle we further determined the quantity of mitochondrial proteins (COX subunits II and IV), transcription factors (NRF1 and TFAM), and VDAC1 (Porin) as a marker for the mitochondrial mass. In the patient the mutation loads varied merely between 89-100%. However, mtDNA copy numbers were increased 3-7 fold in predominantly affected brain areas (e.g. hippocampus, cortex and putamen) and in skeletal muscle. Similar increases were absent in unaffected tissues (e.g. heart, lung, kidney, liver, and gastrointestinal organs). Such mtDNA copy number increase was not paralleled by an augmentation of mitochondrial mass in some investigated tissues, predominantly in the most affected tissue regions of the brain. We thus conclude that "futile" stimulation of mtDNA replication per se or a secondary failure to increase the mitochondrial mass may contribute to the regionalized pathology seen in MERRF-syndrome.


DNA, Mitochondrial/genetics , MERRF Syndrome/genetics , Adolescent , Base Sequence , Blotting, Western , DNA Primers , Female , Humans , MERRF Syndrome/pathology , Male , Pedigree , Polymerase Chain Reaction
...