Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13055, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567871

RESUMEN

In the mountain terrain, ice holes are little depressions between rock boulders that are characterized by the exit of cold air able to cool down the rock surface even in summer. This cold air creates cold microrefugia in warmer surroundings that preserve plant species probably over thousands of years under extra-zonal climatic conditions. We hypothesized that ice hole populations of the model species Vaccinium vitis-idaea (Ericaceae) show genetic differentiation from nearby zonal subalpine populations, and high functional trait distinctiveness, in agreement with genetic patterns. We genotyped almost 30,000 single nucleotide polymorphisms using restriction site-associated DNA sequencing and measured eight functional traits indicative of individual performance and ecological strategies. Genetic results showed high differentiation among the six populations suggesting isolation. On siliceous bedrock, ice hole individuals exhibited higher levels of admixture than those from subalpine populations which could have experienced more bottlenecks during demographic fluctuations related to glacial cycles. Ice hole and subalpine calcareous populations clearly separated from siliceous populations, indicating a possible effect of bedrock in shaping genetic patterns. Trait analysis reflected the bedrock effect on populations' differentiation. The significant correlation between trait and genetic distances suggests the genetic contribution in shaping intraspecific functional differentiation. In conclusion, extra-zonal populations reveal a prominent genetic and phenotypic differentiation determined by history and ecological contingency. Therefore, microrefugia populations can contribute to the overall variability of the species and lead to intraspecific-driven responses to upcoming environmental changes.


Asunto(s)
Ericaceae , Vaccinium vitis-Idaea , Humanos , Vaccinium vitis-Idaea/genética , Hielo , Estaciones del Año , Polimorfismo de Nucleótido Simple
2.
Biology (Basel) ; 12(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37508399

RESUMEN

Avian influenza is a severe viral infection that has the potential to cause human pandemics. In particular, chickens are susceptible to many highly pathogenic strains of the virus, resulting in significant losses. In contrast, ducks have been reported to exhibit rapid and effective innate immune responses to most avian influenza virus (AIV) infections. To explore the distinct genetic programs that potentially distinguish the susceptibility/resistance of both species to AIV, the investigation of coincident SNPs (coSNPs) and their differing causal effects on gene functions in both species is important to gain novel insight into the varying immune-related responses of chickens and ducks. By conducting a pairwise genome alignment between these species, we identified coSNPs and their respective effect on AIV-related differentially expressed genes (DEGs) in this study. The examination of these genes (e.g., CD74, RUBCN, and SHTN1 for chickens and ABCA3, MAP2K6, and VIPR2 for ducks) reveals their high relevance to AIV. Further analysis of these genes provides promising effector molecules (such as IκBα, STAT1/STAT3, GSK-3ß, or p53) and related key signaling pathways (such as NF-κB, JAK/STAT, or Wnt) to elucidate the complex mechanisms of immune responses to AIV infections in both chickens and ducks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...