Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
2.
J Med Chem ; 65(18): 12445-12459, 2022 09 22.
Article En | MEDLINE | ID: mdl-36098485

Huntington's disease (HD) is a lethal autosomal dominant neurodegenerative disorder resulting from a CAG repeat expansion in the huntingtin (HTT) gene. The product of translation of this gene is a highly aggregation-prone protein containing a polyglutamine tract >35 repeats (mHTT) that has been shown to colocalize with histone deacetylase 4 (HDAC4) in cytoplasmic inclusions in HD mouse models. Genetic reduction of HDAC4 in an HD mouse model resulted in delayed aggregation of mHTT, along with amelioration of neurological phenotypes and extended lifespan. To further investigate the role of HDAC4 in cellular models of HD, we have developed bifunctional degraders of the protein and report the first potent and selective degraders of HDAC4 that show an effect in multiple cell lines, including HD mouse model-derived cortical neurons. These degraders act via the ubiquitin-proteasomal pathway and selectively degrade HDAC4 over other class IIa HDAC isoforms (HDAC5, HDAC7, and HDAC9).


Histone Deacetylases , Huntington Disease , Animals , Disease Models, Animal , Drug Development , Histone Deacetylases/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Mice , Neurons/metabolism , Proteolysis , Ubiquitins
3.
Sci Rep ; 12(1): 8579, 2022 05 20.
Article En | MEDLINE | ID: mdl-35595822

Stimulator of interferon genes (STING) activation induces type I interferons and pro-inflammatory cytokines which stimulate tumor antigen cross presentation and the adaptive immune responses against tumor. The first-generation of STING agonists, cyclic di-nucleotide (CDN), mimicked the endogenous STING ligand cyclic guanosine monophosphate adenosine monophosphate, and displayed limited clinical efficacy. Here we report the discovery of SHR1032, a novel small molecule non-CDN STING agonist. Compared to the clinical CDN STING agonist ADU-S100, SHR1032 has much higher activity in human cells with different STING haplotypes and robustly induces interferon ß (IFNß) production. When dosed intratumorally, SHR1032 induced strong anti-tumor effects in the MC38 murine syngeneic tumor model. Pharmacodynamic studies showed induction of IFNß, tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) in the tumors and, to a lower extent, in the plasma. More importantly, we found SHR1032 directly causes cell death in acute myeloid leukemia (AML) cells. In conclusion, our findings demonstrate that in addition to their established ability to boost anti-tumor immune responses, STING agonists can directly eradicate AML cells, and SHR1032 may present a new and promising therapeutic agent for cancer patients.


Leukemia, Myeloid, Acute , Membrane Proteins , Animals , Apoptosis , Cytokines/metabolism , Humans , Immunotherapy , Interferon-beta/metabolism , Leukemia, Myeloid, Acute/drug therapy , Membrane Proteins/agonists , Membrane Proteins/metabolism , Mice
4.
Cell Rep ; 36(9): 109649, 2021 08 31.
Article En | MEDLINE | ID: mdl-34469738

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Brain/enzymology , DNA Damage , DNA Mismatch Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Huntingtin Protein/genetics , Huntington Disease/enzymology , Multifunctional Enzymes/metabolism , MutL Protein Homolog 1/metabolism , Trinucleotide Repeat Expansion , Animals , Binding, Competitive , Brain/pathology , Cell Line, Tumor , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , HEK293 Cells , Humans , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Multifunctional Enzymes/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism , Protein Binding , Protein Interaction Domains and Motifs
5.
Elife ; 102021 02 23.
Article En | MEDLINE | ID: mdl-33618800

Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington's disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.


Huntingtin Protein/genetics , Huntington Disease/genetics , Mutation , Proteostasis , Animals , Disease Models, Animal , Female , Huntingtin Protein/metabolism , Male , Mice
6.
Nat Commun ; 11(1): 4529, 2020 09 10.
Article En | MEDLINE | ID: mdl-32913184

Although Huntington's disease (HD) is a well studied Mendelian genetic disorder, less is known about its associated epigenetic changes. Here, we characterize DNA methylation levels in six different tissues from 3 species: a mouse huntingtin (Htt) gene knock-in model, a transgenic HTT sheep model, and humans. Our epigenome-wide association study (EWAS) of human blood reveals that HD mutation status is significantly (p < 10-7) associated with 33 CpG sites, including the HTT gene (p = 6.5 × 10-26). These Htt/HTT associations were replicated in the Q175 Htt knock-in mouse model (p = 6.0 × 10-8) and in the transgenic sheep model (p = 2.4 × 10-88). We define a measure of HD motor score progression among manifest HD cases based on multiple clinical assessments. EWAS of motor progression in manifest HD cases exhibits significant (p < 10-7) associations with methylation levels at three loci: near PEX14 (p = 9.3 × 10-9), GRIK4 (p = 3.0 × 10-8), and COX4I2 (p = 6.5 × 10-8). We conclude that HD is accompanied by profound changes of DNA methylation levels in three mammalian species.


DNA Methylation , Epigenesis, Genetic , Huntingtin Protein/genetics , Huntington Disease/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Animals, Genetically Modified , Behavior, Animal , CpG Islands/genetics , Cross-Sectional Studies , Disease Models, Animal , Disease Progression , Female , Follow-Up Studies , Gene Knock-In Techniques , Genetic Loci , Genome-Wide Association Study , Global Burden of Disease , Humans , Huntington Disease/blood , Huntington Disease/diagnosis , Huntington Disease/epidemiology , Longitudinal Studies , Male , Mice , Middle Aged , Mutation , Prospective Studies , Recombinant Proteins/genetics , Registries/statistics & numerical data , Severity of Illness Index , Sheep , Young Adult
7.
Neuron ; 107(5): 891-908.e8, 2020 09 09.
Article En | MEDLINE | ID: mdl-32681824

The mechanisms by which mutant huntingtin (mHTT) leads to neuronal cell death in Huntington's disease (HD) are not fully understood. To gain new molecular insights, we used single nuclear RNA sequencing (snRNA-seq) and translating ribosome affinity purification (TRAP) to conduct transcriptomic analyses of caudate/putamen (striatal) cell type-specific gene expression changes in human HD and mouse models of HD. In striatal spiny projection neurons, the most vulnerable cell type in HD, we observe a release of mitochondrial RNA (mtRNA) (a potent mitochondrial-derived innate immunogen) and a concomitant upregulation of innate immune signaling in spiny projection neurons. Further, we observe that the released mtRNAs can directly bind to the innate immune sensor protein kinase R (PKR). We highlight the importance of studying cell type-specific gene expression dysregulation in HD pathogenesis and reveal that the activation of innate immune signaling in the most vulnerable HD neurons provides a novel framework to understand the basis of mHTT toxicity and raises new therapeutic opportunities.


Huntingtin Protein/immunology , Huntington Disease/immunology , Immunity, Innate/immunology , Neurons/immunology , RNA, Mitochondrial/immunology , Animals , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Mutation , Neurons/pathology , Transcriptome
9.
J Steroid Biochem Mol Biol ; 163: 88-97, 2016 10.
Article En | MEDLINE | ID: mdl-27106747

The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients.


Anabolic Agents/pharmacology , Androgen Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Azasteroids/pharmacology , Carbamates/pharmacology , Carcinoma/drug therapy , Muscle, Skeletal/drug effects , Prostatic Neoplasms/drug therapy , Animals , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Chemotherapy, Adjuvant/methods , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Orchiectomy , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Testosterone/antagonists & inhibitors , Testosterone/metabolism , Xenograft Model Antitumor Assays
10.
J Steroid Biochem Mol Biol ; 143: 29-39, 2014 Sep.
Article En | MEDLINE | ID: mdl-24565564

Prostate cancer (PCa) initially responds to inhibition of androgen receptor (AR) signaling, but inevitably progresses to hormone ablation-resistant disease. Much effort is focused on optimizing this androgen deprivation strategy by improving hormone depletion and AR antagonism. However we found that bicalutamide, a clinically used antiandrogen, actually resembles a selective AR modulator (SARM), as it partially regulates 24% of endogenously 5α-dihydrotestosterone (DHT)-responsive genes in AR(+) MDA-MB-453 breast cancer cells. These data suggested that passive blocking of all AR functions is not required for PCa therapy. Hence, we adopted an active strategy that calls for the development of novel SARMs, which induce a unique gene expression profile that is intolerable to PCa cells. Therefore, we screened 3000 SARMs for the ability to arrest the androgen-independent growth of AR(+) 22Rv1 and LNCaP PCa cells but not AR(-) PC3 or DU145 cells. We identified only one such compound; the 4-aza-steroid, MK-4541, a potent and selective SARM. MK-4541 induces caspase-3 activity and cell death in both androgen-independent, AR(+) PCa cell lines but spares AR(-) cells or AR(+) non-PCa cells. This activity correlates with its promoter context- and cell-type dependent transcriptional effects. In rats, MK-4541 inhibits the trophic effects of DHT on the prostate, but not the levator ani muscle, and triggers an anabolic response in the periosteal compartment of bone. Therefore, MK-4541 has the potential to effectively manage prostatic hypertrophic diseases owing to its antitumor SARM-like mechanism, while simultaneously maintaining the anabolic benefits of natural androgens.


Anabolic Agents/pharmacology , Apoptosis/drug effects , Azasteroids/pharmacology , Breast Neoplasms/pathology , Carbamates/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/chemistry , Anabolic Agents/chemistry , Androgen Receptor Antagonists/pharmacology , Androgens/pharmacology , Animals , Azasteroids/chemistry , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Carbamates/chemistry , Cell Proliferation/drug effects , Combinatorial Chemistry Techniques , Female , Humans , Male , Mice , Mice, Inbred C57BL , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
11.
J Gerontol A Biol Sci Med Sci ; 68(10): 1181-92, 2013 Oct.
Article En | MEDLINE | ID: mdl-23525481

Myostatin is a highly conserved member of the transforming growth factor-ß ligand family known to regulate muscle growth via activation of activin receptors. A fusion protein consisting of the extracellular ligand-binding domain of activin type IIB receptor with the Fc portion of human immunoglobulin G (ActRIIB-Fc) was used to inhibit signaling through this pathway. Here, we study the effects of this fusion protein in adult, 18-month-old, and orchidectomized mice. Significant muscle growth and enhanced muscle function were observed in adult mice treated for 3 days with ActRIIB-Fc. The ActRIIB-Fc-treated mice had enhanced fast fatigable muscle function, with only minor enhancement of fatigue-resistant fiber function. The ActRIIB-Fc-treated 18-month-old mice and orchidectomized mice showed significantly improved muscle function. Treatment with ActRIIB-Fc also increased bone mineral density and serum levels of a marker of bone formation. These observations highlight the potential of targeting ActRIIB receptor to treat age-related and hypogonadism-associated musculoskeletal degeneration.


Activin Receptors, Type II/pharmacology , Aging/drug effects , Aging/physiology , Bone Density/drug effects , Muscle Contraction/drug effects , Activin Receptors, Type II/metabolism , Animals , Biomarkers/blood , Bone Density/physiology , Cell Line , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/pharmacology , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/physiology , Muscle Strength/drug effects , Muscle Strength/physiology , Myostatin/metabolism , Orchiectomy , Peptide Fragments/blood , Procollagen/blood , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Sarcopenia/drug therapy , Sarcopenia/pathology , Sarcopenia/physiopathology
12.
Mol Syst Biol ; 8: 594, 2012 Jul 17.
Article En | MEDLINE | ID: mdl-22806142

Common inflammatome gene signatures as well as disease-specific signatures were identified by analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent inflammatory disease models. The inflammatome signature significantly overlaps with known drug targets and co-expressed gene modules linked to metabolic disorders and cancer. A large proportion of genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from multiple independent mouse and human cohorts. Both the inflammatome signature and the corresponding consensus BNs are highly enriched for immune response-related genes supported as causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome signature with the BNs uncovered 151 key drivers that appeared to be more biologically important than the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome signature, its network architecture, and key drivers not only highlights the shared etiology but also pinpoints potential targets for intervention of various common diseases.


Gene Expression Profiling , Inflammasomes/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Age Factors , Analysis of Variance , Animals , Bayes Theorem , Caspases/genetics , Caspases/immunology , Chemokines/genetics , Chemokines/immunology , Cohort Studies , Computational Biology/methods , Disease Models, Animal , Female , Gene Regulatory Networks/immunology , Humans , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley , Sex Factors
13.
Biomarkers ; 17(2): 172-9, 2012 Mar.
Article En | MEDLINE | ID: mdl-22299632

Estrogen Receptor α (ERα) and Estrogen Receptor ß (ERß) are steroid nuclear receptors that transduce estrogen signaling to control diverse physiological processes linked to reproduction, bone remodeling, behavior, immune response and endocrine-related diseases. In order to differentiate between ERα and ERß mediated effects in vivo, ER subtype selective biomarkers are essential. We utilized ERα knockout (AERKO) and ERß knockout (BERKO) mouse liver RNA and genome wide profiling to identify novel ERα selective serum biomarker candidates. Results from the gene array experiments were validated using real-time RT-PCR and subsequent ELISA's to demonstrate changes in serum proteins. Here we present data that Lipopolysacharide Binding Protein (LBP) is a novel liver-derived ERα selective biomarker that can be measured in serum.


Biomarkers/blood , Blood Proteins/analysis , Carrier Proteins/blood , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Membrane Glycoproteins/blood , RNA, Messenger/biosynthesis , Acute-Phase Proteins , Animals , Estradiol/administration & dosage , Estrogen Receptor alpha/deficiency , Estrogen Receptor beta/deficiency , Female , Gene Expression Profiling , Gene Expression Regulation , Liver/drug effects , Liver/metabolism , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , Rats , Uterus/drug effects , Uterus/metabolism
14.
Cardiopulm Phys Ther J ; 22(4): 5-11, 2011 Dec.
Article En | MEDLINE | ID: mdl-22163175

PURPOSE: The purpose of this study was to determine the effects of a 6-week interactive video dance game (IVDG) program on adult participants' cardiorespiratory status and body mass index (BMI). METHODS: Twenty-seven healthy adult participants attended IVDG sessions over a 6-week period. Participants completed pre- and post-testing consisting of a submaximal VO(2) treadmill test, assessment of resting heart rate (RHR) and blood pressure (BP), BMI, and general health questionnaires. Data were analyzed using descriptives, paired t-tests to assess pre-to post-testing differences, and one-way ANOVAs to analyze variables among select groups of participants. Questionnaire data was manually coded and assessed. RESULTS: Twenty participants attended at least 75% of available sessions and were used in data analysis. Mean BMI decreased significantly (from 26.96 kg/m(2) to 26.21 kg/m(2); 2.87%) and cardiorespiratory fitness measured by peak VO(2) increased significantly (from 20.63 ml/kg/min to 21.69 ml/kg/min; 5.14%). Most participants reported that the IVDG program was a good workout, and that they were encouraged to continue or start an exercise routine. Forty percent reported improvements in sleep, and nearly half stated they had or were considering purchasing a home version of a video dance game. CONCLUSIONS: Interactive video dance game is an effective and enjoyable exercise program for adults who wish to decrease their BMI and improve components of cardiorespiratory fitness.

15.
BMC Musculoskelet Disord ; 12: 246, 2011 Oct 28.
Article En | MEDLINE | ID: mdl-22035016

BACKGROUND: Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates. METHODS: The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model RESULTS: The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves. CONCLUSIONS: The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy.


Aging/physiology , Isometric Contraction/physiology , Muscle Fatigue/physiology , Sarcopenia/physiopathology , Age Factors , Aging/drug effects , Animals , Biological Assay , Dexamethasone/pharmacology , Disease Models, Animal , Electric Stimulation , Glucocorticoids/pharmacology , Isometric Contraction/drug effects , Male , Muscle Fatigue/drug effects , Rats , Rats, Sprague-Dawley
16.
Maturitas ; 64(1): 46-51, 2009 Sep 20.
Article En | MEDLINE | ID: mdl-19679413

OBJECTIVE: To test the role of ERbeta in the control of estrogen-dependent thermoregulation in rats. METHODS: Test the ability of an ERbeta-selective ligand to suppress the elevation in basal rat tail skin temperature (TST) caused by ovariectomy (OVX). RESULTS: ERbeta-19 is a tetrahydrofluorenone ERbeta-selective ligand that displaces 0.1 nM estradiol from ERbeta with an IC50 of 1.8 nM compared to an IC50 of 141 nM for ERalpha. Like estradiol, it acts as an agonist on ERbeta-mediated transactivation and transrepression with 25- and 60-fold selectivity, respectively, over ERalpha-controlled transcription. Administration of estradiol to estrogen-depleted rats suppresses the ovariectomy-induced elevation of TST. Similar treatment of OVX rats with ERbeta-19 also results in suppression of elevated TST. However, in contrast to estradiol, ERbeta-19 does not suppress body weight, does not increase uterine weight, nor does it stimulate uterocalin biomarker expression which is under the control of ERalpha. Thus, the ERbeta-19 suppression of rat TST is mediated by ERbeta without eliciting the activity of ERalpha. CONCLUSION: Estrogen-sensitive thermoregulation in ovariectomized rats can be controlled by an ERbeta-selective ligand.


Body Temperature Regulation/genetics , Estradiol/pharmacology , Estrogen Receptor beta/agonists , Fluorenes/pharmacology , Skin Temperature/genetics , Animals , Body Temperature Regulation/physiology , Body Weight/drug effects , Estradiol/genetics , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Female , Gene Expression Regulation , Ligands , Lipocalins/metabolism , Organ Size/drug effects , Ovariectomy , Rats , Rats, Sprague-Dawley , Skin Temperature/physiology , Tail , Uterus/metabolism
17.
PLoS One ; 4(5): e5624, 2009 May 20.
Article En | MEDLINE | ID: mdl-19462000

BACKGROUND: The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor alpha (ERalpha). An endogenous ligand has not been found. Novel ERRalpha antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRalpha have been recently reported. Research suggests that ERRalpha may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRalpha specific antagonist. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate this ERRalpha ligand inhibits ERRalpha transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERalpha (ESR1) mRNA levels were not affected upon treatment with the ERRalpha antagonist, but other ERRalpha (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRalpha antagonist prevents the constitutive interaction between ERRalpha and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRalpha protein degradation via the ubiquitin proteasome pathway is increased by the ERRalpha-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRalpha protein is decreased when cells are treated with the ligand. Knocking-down ERRalpha (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRalpha antagonist. CONCLUSIONS/SIGNIFICANCE: We report the mechanism of action of a novel ERRalpha specific antagonist that inhibits transcriptional activity of ERRalpha, disrupts the constitutive interaction between ERRalpha and nuclear coactivators, and induces proteasome-dependent ERRalpha protein degradation. Additionally, we confirmed that knocking-down ERRalpha lead to similar genomic effects demonstrated in vitro when treated with the ERRalpha specific antagonist.


Breast Neoplasms/metabolism , Receptors, Estrogen/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Gene Silencing/drug effects , Humans , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Processing, Post-Translational/drug effects , Protein Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Transcription, Genetic/drug effects , ERRalpha Estrogen-Related Receptor
18.
Mol Cancer Ther ; 8(3): 672-81, 2009 Mar.
Article En | MEDLINE | ID: mdl-19276159

Estrogen-related receptors (ERR) are orphan members of the nuclear receptor superfamily most closely related to estrogen receptors (ER). Although ERalpha is a successful target for treating breast cancer, there remains an unmet medical need especially for estrogen-independent breast cancer. Although estradiol is not an ERR ligand, ER and ERR share many commonalities and overlapping signaling pathways. An endogenous ERR ligand has not been identified; however, novel synthetic ERRalpha subtype-specific antagonists have started to emerge. In particular, we recently identified a novel compound, N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine (termed compound A) that acts specifically as an ERRalpha antagonist. Here, we show that compound A inhibited cell proliferation in ERalpha-positive (MCF-7 and T47D) and ERalpha-negative (BT-20 and MDA-MD-231) breast cancer cell lines. Furthermore, we report the differential expression of 83 genes involved in ERRalpha signaling in MCF-7 and BT-20 breast cancer cell lines. We show that compound A slowed tumor growth in MCF-7 and BT-20 mouse xenograft models, and displayed antagonistic effects on the uterus. Furthermore, a subset of genes involved in ERRalpha signaling in vitro were evaluated and confirmed in vivo by studying uterine gene expression profiles from xenograft mice. These results suggest for the first time that inhibition of ERRalpha signaling via a subtype-specific antagonist may be an effective therapeutic strategy for ER-positive and ER-negative breast cancers.


Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Estrogen Receptor alpha/genetics , Receptors, Estrogen/antagonists & inhibitors , Thiazolidines/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Down-Regulation/drug effects , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Mice , Mice, Nude , Substrate Specificity/drug effects , Thiazolidines/pharmacology , Tumor Cells, Cultured , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Xenograft Model Antitumor Assays , ERRalpha Estrogen-Related Receptor
19.
Endocrinology ; 146(11): 4568-76, 2005 Nov.
Article En | MEDLINE | ID: mdl-15994348

Dehydroepiandrosterone (DHEA) exhibits peak adrenal secretion in the fetus at term and around age 30 yr in the adult. Levels then progressively decline, which is associated with decreased levels of testosterone, dihydrotestosterone, and estrogen in peripheral tissues. DHEA supplementation in postmenopausal women increases bone formation and density, an effect mainly attributed to peripheral conversion to sex hormones. In this study, we tested DHEA for direct effects on the androgen (AR) and estrogen (ER) receptors. DHEA bound to AR with a Ki of 1 microM, which was associated with AR transcriptional antagonism on both the mouse mammary tumor virus and prostate-specific antigen promoters, much like the effects of bicalutamide. Unlike bicalutamide, DHEA stimulated, rather than inhibited, LNCaP cell growth, suggesting possible interaction with other hormone receptors. Indeed DHEA bound to ERalpha and ERbeta, with Ki values of 1.1 and 0.5 microM, respectively. Despite the similar binding affinities, DHEA showed preferential agonism of ERbeta with an EC50 of approximately 200 nm and maximal activation at 1 microM. With ERalpha we found 30-70% agonism at 5 microM, depending on the assay. Physiological levels of DHEA are approximately 30 nM and up to 90 nM in the prostate. DHEA at 30 nM is actually sufficient to activate ERbeta transcription to the same degree as estrogen at its circulating concentration, and additive effects are seen when the two were combined. Taken together, DHEA has the potential for physiologically relevant direct activation of ERbeta. With peak levels at term and age 30 yr, there is also a potential for antagonist effects on AR and partial agonism of ERalpha.


Androgen Receptor Antagonists , Dehydroepiandrosterone/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor beta/agonists , Animals , Cell Division/drug effects , Cell Line , Dehydroepiandrosterone/metabolism , Estrogen Receptor beta/genetics , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcription, Genetic/drug effects
20.
Bioorg Med Chem Lett ; 15(6): 1675-81, 2005 Mar 15.
Article En | MEDLINE | ID: mdl-15745820

The discovery, synthesis, and SAR of chromanes as ER alpha subtype selective ligands are described. X-ray studies revealed that the origin of the ER alpha-selectivity resulted from a C-4 trans methyl substitution to the cis-2,3-diphenyl-chromane platform. Selected compounds from this class demonstrated very potent in vivo antagonism of estradiol in an immature rat uterine weight assay, effectively inhibited ovariectomy-induced bone resorption in a 42 days treatment paradigm, and lowered serum cholesterol levels in ovx'd adult rat models. The best antagonists 8F and 12F also exhibited potent inhibition of MCF-7 cell growth and were shown to be estrogen receptor down-regulators (SERDs).


Chromans/chemistry , Chromans/pharmacology , Estrogen Receptor alpha/metabolism , Selective Estrogen Receptor Modulators/chemistry , Selective Estrogen Receptor Modulators/pharmacology , Animals , Binding Sites , Cell Line , Female , Gene Expression/drug effects , Humans , Ligands , Models, Chemical , Molecular Structure , Organ Size , Protein Binding , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Uterus/drug effects
...