Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2206971120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155909

RESUMEN

Variation in evolutionary rates among species is a defining characteristic of the tree of life and may be an important predictor of species' capacities to adapt to rapid environmental change. It is broadly assumed that generation length is an important determinant of microevolutionary rates, and body size is often used as a proxy for generation length. However, body size has myriad biological correlates that could affect evolutionary rates independently from generation length. We leverage two large, independently collected datasets on recent morphological change in birds (52 migratory species breeding in North America and 77 South American resident species) to test how body size and generation length are related to the rates of contemporary morphological change. Both datasets show that birds have declined in body size and increased in wing length over the past 40 y. We found, in both systems, a consistent pattern wherein smaller species declined proportionally faster in body size and increased proportionally faster in wing length. By contrast, generation length explained less variation in evolutionary rates than did body size. Although the mechanisms warrant further investigation, our study demonstrates that body size is an important predictor of contemporary variation in morphological rates of change. Given the correlations between body size and a breadth of morphological, physiological, and ecological traits predicted to mediate phenotypic responses to environmental change, the relationship between body size and rates of phenotypic change should be considered when testing hypotheses about variation in adaptive responses to climate change.


Asunto(s)
Evolución Biológica , Aves , Animales , Aves/fisiología , Tamaño Corporal/fisiología , Cambio Climático , Adaptación Fisiológica
2.
Mol Ecol ; 32(12): 3290-3307, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36974685

RESUMEN

Seasonal migration of Nearctic-Neotropical passerine birds may have profound effects on the diversity and abundance of their host-associated microbiota. Migratory birds experience seasonal change in environments and diets throughout the course of the annual cycle that, along with recurrent biological events such as reproduction, may significantly impact their microbiota. In this study, we characterize the intestinal microbiota of four closely related species of migratory Catharus thrushes at three time points of their migratory cycle: during spring migration, on the summer breeding territories and during fall migration. Using observations replicated over 3 years, we determined that microbial community diversity of Catharus thrushes was significantly different across distinct time periods of the annual cycle, whereas community composition was more similar within than across years. Elevated alpha diversity in the summer birds compared to either migratory period indicated that birds may harbour a reduced microbiota during active migration. We also found that community composition of the microbiota did not substantially differ between host species. Finally, we recovered two phyla, Cyanobacteria and Planctomycetota, which are not commonly described from birds, that were in relatively high abundance in specific years. This study contributes to our growing understanding of how microbiota in wild birds vary throughout disparate ecological conditions and reveals potential axes across which an animal's microbial flexibility adapts to variable environments and recurrent biological conditions throughout the annual cycle.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Pájaros Cantores , Animales , Estaciones del Año , Microbioma Gastrointestinal/genética , Migración Animal
3.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099553

RESUMEN

Millions of nocturnally migrating birds die each year from collisions with built structures, especially brightly illuminated buildings and communication towers. Reducing this source of mortality requires knowledge of important behavioral, meteorological, and anthropogenic factors, yet we lack an understanding of the interacting roles of migration, artificial lighting, and weather conditions in causing fatal bird collisions. Using two decades of collision surveys and concurrent weather and migration measures, we model numbers of collisions occurring at a large urban building in Chicago. We find that the magnitude of nocturnal bird migration, building light output, and wind conditions are the most important predictors of fatal collisions. The greatest mortality occurred when the building was brightly lit during large nocturnal migration events and when winds concentrated birds along the Chicago lakeshore. We estimate that halving lighted window area decreases collision counts by 11× in spring and 6× in fall. Bird mortality could be reduced by ∼60% at this site by decreasing lighted window area to minimum levels historically recorded. Our study provides strong support for a relationship between nocturnal migration magnitude and urban bird mortality, mediated by light pollution and local atmospheric conditions. Although our research focuses on a single site, our findings have global implications for reducing or eliminating a critically important cause of bird mortality.


Asunto(s)
Aves/fisiología , Migración Animal/fisiología , Animales , Chicago , Ciudades , Iluminación , Factores de Tiempo , Viento
4.
J Anim Ecol ; 90(10): 2348-2361, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34151433

RESUMEN

Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood. In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed. Advancing spring phenology might also expose species to cooler temperatures during the breeding season, potentially mitigating the effect of a warming global environment on body size. We use a dataset of birds that died after colliding with buildings in Chicago, IL to test whether changes in migration phenology are related to documented declines in body size and increases in wing length in 52 North American migratory bird species between 1978 and 2016. For each species, we estimate temporal trends in morphology and changes in the timing of migration. We then test for associations between species-specific rates of phenological and morphological changes while assessing the potential effects of migratory distance and breeding latitude. We show that spring migration through Chicago has advanced while the timing of fall migration has broadened as a result of early fall migrants advancing their migrations and late migrants delaying their migrations. Within species, we found that longer wing length was linked to earlier spring migration within years. However, we found no evidence that rates of phenological change across years, or migratory distance and breeding latitude, are predictive of rates of concurrent changes in morphological traits. These findings suggest that biotic responses to climate change are highly multidimensional and the extent to which those responses interact and influence adaptation to climate change requires careful examination.


Asunto(s)
Migración Animal , Aves , Animales , Cambio Climático , Estaciones del Año , Temperatura
5.
Ecol Lett ; 23(2): 316-325, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31800170

RESUMEN

Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four-decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40-year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length - an index of body shape that impacts numerous aspects of avian ecology and behaviour - has consistently increased across species. Our findings suggest that warming-induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming-induced morphological changes is important for predicting biotic responses to global change.


Asunto(s)
Aves , Calentamiento Global , Migración Animal , Animales , Tamaño Corporal , Cambio Climático , Estaciones del Año , Temperatura
6.
Proc Biol Sci ; 286(1900): 20190364, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30940055

RESUMEN

Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA. We found that the use of nocturnal flight calls is an important predictor of collision risk in nocturnally migrating passerine birds. Species that produce flight calls during nocturnal migration tended to collide with buildings more than expected given their local abundance, whereas those that do not use such communication collided much less frequently. Our results suggest that a stronger attraction response to artificial light at night in species that produce flight calls may mediate these differences in collision rates. Nocturnal flight calls probably evolved to facilitate collective decision-making during navigation, but this same social behaviour may now exacerbate vulnerability to a widespread anthropogenic disturbance. Our results also suggest that social behaviour during migration may reflect poorly understood differences in navigational mechanisms across lineages of birds.


Asunto(s)
Migración Animal , Aves/fisiología , Mortalidad , Vocalización Animal , Animales , Chicago , Ohio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...