Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 1743, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990994

RESUMEN

The Greenland Ice Sheet has been losing mass at an increased rate in recent decades. In northeast Greenland, increasing surface melt has accompanied speed-ups in the outlet glaciers of the Northeast Greenland Ice Stream, which contain over one meter of sea level rise potential. Here we show that the most intense northeast Greenland melt events are driven by atmospheric rivers (ARs) affecting northwest Greenland that induce foehn winds in the northeast. Near low-elevation outlet glaciers, 80-100% of extreme (> 99th percentile) melt occurs during foehn conditions and 50-75% during ARs. These events have become more frequent during the twenty-first century, with 5-10% of total northeast Greenland melt in several recent summers occurring during the ~1% of times with strong AR and foehn conditions. We conclude that the combined AR-foehn influence on northeast Greenland extreme melt will likely continue to grow as regional atmospheric moisture content increases with climate warming.

3.
Geophys Res Lett ; 49(18): e2022GL100585, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36246739

RESUMEN

Atmospheric rivers (ARs) are efficient mechanisms for transporting atmospheric moisture from low latitudes to the Antarctic Ice Sheet (AIS). While AR events occur infrequently, they can lead to extreme precipitation and surface melt events on the AIS. Here we estimate the contribution of ARs to total Antarctic precipitation, by combining precipitation from atmospheric reanalyses and a polar-specific AR detection algorithm. We show that ARs contribute substantially to Antarctic precipitation, especially in East Antarctica at elevations below 3,000 m. ARs contribute substantially to year-to-year variability in Antarctic precipitation. Our results highlight that ARs are an important component for understanding present and future Antarctic mass balance trends and variability.

4.
Geophys Res Lett ; 49(16): e2022GL099577, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36249465

RESUMEN

Antarctic atmospheric rivers (ARs) are driven by their synoptic environments and lead to profound and varying impacts along the coastlines and over the continent. The definition and detection of ARs over Antarctica accounts for large uncertainty in AR metrics, and consequently, impacts quantification. We find that Antarctic-specific detection tools consistently capture the AR footprint inland over ice sheets, whereas most global detection tools do not. Large-scale synoptic environments and associated ARs, however, are broadly consistent across detection tools. Using data from the Atmospheric River Tracking Method Intercomparison Project and global reanalyses, we quantify the uncertainty in Antarctic AR metrics and evaluate large-scale environments in the context of decadal and interannual modes of variability. The Antarctic western hemisphere has stronger connections to both decadal and interannual modes of variability compared to East Antarctica, and the Indian Ocean Dipole's influence on Antarctic ARs is stronger while in phase with El Nino Southern Oscillation.

5.
Nat Commun ; 8: 15799, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643801

RESUMEN

Over the past two decades the primary driver of mass loss from the West Antarctic Ice Sheet (WAIS) has been warm ocean water underneath coastal ice shelves, not a warmer atmosphere. Yet, surface melt occurs sporadically over low-lying areas of the WAIS and is not fully understood. Here we report on an episode of extensive and prolonged surface melting observed in the Ross Sea sector of the WAIS in January 2016. A comprehensive cloud and radiation experiment at the WAIS ice divide, downwind of the melt region, provided detailed insight into the physical processes at play during the event. The unusual extent and duration of the melting are linked to strong and sustained advection of warm marine air toward the area, likely favoured by the concurrent strong El Niño event. The increase in the number of extreme El Niño events projected for the twenty-first century could expose the WAIS to more frequent major melt events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA