Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928299

RESUMEN

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.


Asunto(s)
Metronidazol , Nitroimidazoles , Nitrorreductasas , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Nitroimidazoles/química , Nitroimidazoles/metabolismo , Metronidazol/química , Metronidazol/metabolismo , Metronidazol/farmacología , Profármacos/metabolismo , Profármacos/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Tomografía de Emisión de Positrones/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Dominio Catalítico , Ingeniería de Proteínas , Modelos Moleculares , Aziridinas/química , Aziridinas/metabolismo
2.
Cell Chem Biol ; 30(12): 1680-1691.e6, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37898120

RESUMEN

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ∼5-fold more effective than the canonical nitroreductase NfsB.


Asunto(s)
Metronidazol , Pez Cebra , Animales , Metronidazol/farmacología , Metronidazol/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Metagenoma , Clonación Molecular , Nitrorreductasas/genética
3.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993673

RESUMEN

Functional screening of environmental DNA (eDNA) libraries is a potentially powerful approach to discover enzymatic "unknown unknowns", but is usually heavily biased toward the tiny subset of genes preferentially transcribed and translated by the screening strain. We have overcome this by preparing an eDNA library via partial digest with restriction enzyme FatI (cuts CATG), causing a substantial proportion of ATG start codons to be precisely aligned with strong plasmid-encoded promoter and ribosome-binding sequences. Whereas we were unable to select nitroreductases from standard metagenome libraries, our FatI strategy yielded 21 nitroreductases spanning eight different enzyme families, each conferring resistance to the nitro-antibiotic niclosamide and sensitivity to the nitro-prodrug metronidazole. We showed expression could be improved by co-expressing rare tRNAs and encoded proteins purified directly using an embedded His6-tag. In a transgenic zebrafish model of metronidazole-mediated targeted cell ablation, our lead MhqN-family nitroreductase proved ~5-fold more effective than the canonical nitroreductase NfsB.

4.
Enzyme Microb Technol ; 163: 110153, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36403327

RESUMEN

DNA ligases are widely used in molecular biology to generate recombinant DNA. However, having evolved for nick-sealing, they are inefficient at catalysing the blunt-ended ligations that are critical to many biotechnological applications, including next-generation sequencing. To facilitate engineering of superior blunt-ended DNA ligases, we have developed and validated a compartmentalised self-replication protocol that can select for the most effective ligases from a library of variants. Parallel cultures of Escherichia coli cells expressing different plasmid-encoded variants act as both a source of template DNA for discrete whole-plasmid PCR reactions, and a source of expressed ligase to circularise the corresponding PCR amplicons. The most efficient ligases generate the greatest number of self-encoding plasmids, and are thereby selected over successive rounds of transformation, amplification and ligation. By individually optimising critical steps, we arrived at a coherent protocol that, over five rounds of selection, consistently enriched for cells expressing the more efficient of two recombinant DNA ligases.


Asunto(s)
ADN Ligasas , ADN Recombinante , ADN Ligasas/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Escherichia coli/genética , Ligasas/genética
5.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35215297

RESUMEN

PR-104A is a dual hypoxia/nitroreductase gene therapy prodrug by virtue of its ability to undergo either one- or two-electron reduction to its cytotoxic species. It has been evaluated extensively in pre-clinical GDEPT studies, yet off-target human aldo-keto reductase AKR1C3-mediated activation has limited its use. Re-evaluation of this chemical scaffold has previously identified SN29176 as an improved hypoxia-activated prodrug analogue of PR-104A that is free from AKR1C3 activation. However, optimization of the bystander effect of SN29176 is required for use in a GDEPT setting to compensate for the non-uniform distribution of therapeutic gene transfer that is often observed with current gene therapy vectors. A lipophilic series of eight analogues were synthesized from commercially available 3,4-difluorobenzaldehyde. Calculated octanol-water partition coefficients (LogD7.4) spanned > 2 orders of magnitude. 2D anti-proliferative and 3D multicellular layer assays were performed using isogenic HCT116 cells expressing E. coli NfsA nitroreductase (NfsA_Ec) or AKR1C3 to determine enzyme activity and measure bystander effect. A variation in potency for NfsA_Ec was observed, while all prodrugs appeared AKR1C3-resistant by 2D assay. However, 3D assays indicated that increasing prodrug lipophilicity correlated with increased AKR1C3 activation and NfsA_Ec activity, suggesting that metabolite loss from the cell of origin into media during 2D monolayer assays could mask cytotoxicity. Three prodrugs were identified as bono fide AKR1C3-negative candidates whilst maintaining activity with NfsA_Ec. These were converted to their phosphate ester pre-prodrugs before being taken forward into in vivo therapeutic efficacy studies. Ultimately, 2-(5-(bis(2-bromoethyl)amino)-4-(ethylsulfonyl)-N-methyl-2-nitrobenzamido)ethyl dihydrogen phosphate possessed a significant 156% improvement in median survival in mixed NfsA_Ec/WT tumors compared to untreated controls (p = 0.005), whilst still maintaining hypoxia selectivity comparable to PR-104A.

6.
Nat Methods ; 19(2): 205-215, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35132245

RESUMEN

Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.


Asunto(s)
Metronidazol/farmacología , Nitrorreductasas/metabolismo , Profármacos/química , Animales , Animales Modificados Genéticamente , Células CHO , Cricetulus , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Metronidazol/farmacocinética , Nitrorreductasas/química , Nitrorreductasas/genética , Profármacos/farmacología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/citología , Retina/efectos de los fármacos , Vibrio/enzimología , Pez Cebra/genética
7.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185191

RESUMEN

Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active-site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers.


In the cell, most tasks are performed by big molecules called proteins, which behave like molecular machines. Although proteins are often described as having one job each, this is not always true, and many proteins can perform different roles. Enzymes are a type of protein that facilitate chemical reactions. They are often specialised to one reaction, but they can also accelerate other side-reactions. During evolution, these side-reactions can become more useful and, as a result, the role of the enzyme may change over time. The main role of the enzyme called NfsA in Escherichia coli bacteria is thought to be to convert molecules called quinones into hydroquinones, which can protect the cell from toxic molecules produced in oxidation reactions. As a side-reaction, NfsA has the potential to protect bacteria from an antibiotic called chloramphenicol, but it generally does this with such low efficacy that the effects are negligible. Producing hydroquinones is helpful to the cell in some situations, but if bacteria are regularly exposed to chloramphenicol, NfsA's role aiding antibiotic resistance could become more important. Over time, the enzyme could evolve to become better at neutralising chloramphenicol. Therefore, NfsA provides an opportunity to study the evolution of proteins and how bacteria adapt to antibiotics. To see how evolution might affect the activity of NfsA, Hall et al. generated 250 million E. coli with either random or targeted changes to the gene that codes for the NfsA enzyme. The resulting variants of NfsA that were most effective against chloramphenicol all had a change that eliminated the enzyme's ability to convert quinones. This result demonstrates a key trade-off between roles for NfsA, where one must be lost for the other to improve. These results demonstrate the interplay between a protein's different roles and provide insight into bacterial drug resistance. Additionally, the experiments showed that the bacteria with improved resistance to chloramphenicol also became more sensitive to another antibiotic, metronidazole. These findings could inform the fight against drug-resistant bacterial infections and may also be helpful in guiding the design of proteins with different roles.


Asunto(s)
Cloranfenicol/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nitrorreductasas/metabolismo , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolución Molecular , Inactivación Metabólica , Mutación , Nitrorreductasas/química , Nitrorreductasas/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
8.
mBio ; 11(5)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934086

RESUMEN

One avenue to combat multidrug-resistant Gram-negative bacteria is the coadministration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we examine the molecular mechanisms of niclosamide, a clinically approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress, and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when coadministered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development, and stewardship of novel combination therapies.IMPORTANCE There is a critical need for more-effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We examined the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide and subsequently exploited this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies.


Asunto(s)
Antibacterianos/farmacología , Sinergismo Farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Salicilanilidas/metabolismo , Salicilanilidas/farmacología , Animales , Diseño de Fármacos , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Quimioterapia Combinada/métodos , Femenino , Ratones , Pruebas de Sensibilidad Microbiana , Niclosamida/metabolismo , Niclosamida/farmacología
9.
Biochemistry ; 58(35): 3700-3710, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31403283

RESUMEN

Gene-directed enzyme prodrug therapy (GDEPT) uses tumor-tropic vectors to deliver prodrug-converting enzymes such as nitroreductases specifically to the tumor environment. The nitroreductase NfsB from Escherichia coli (NfsB_Ec) has been a particular focal point for GDEPT and over the past 25 years has been the subject of several engineering studies seeking to improve catalysis of prodrug substrates. To facilitate clinical development, there is also a need to enable effective non-invasive imaging capabilities. SN33623, a 5-nitroimidazole analogue of 2-nitroimidazole hypoxia probe EF5, has potential for PET imaging exogenously delivered nitroreductases without generating confounding background due to tumor hypoxia. However, we show here that SN33623 is a poor substrate for NfsB_Ec. To address this, we used assay-guided sequence and structure analysis to identify two conserved residues that block SN33623 activation in NfsB_Ec and close homologues. Introduction of the rational substitutions F70A and F108Y into NfsB_Ec conferred high levels of SN33623 activity and enabled specific labeling of E. coli expressing the engineered enzyme. Serendipitously, the F70A and F108Y substitutions also substantially improved activity with the anticancer prodrug CB1954 and the 5-nitroimidazole antibiotic prodrug metronidazole, which is a potential biosafety agent for targeted ablation of nitroreductase-expressing vectors.


Asunto(s)
Monitoreo de Drogas/métodos , Proteínas de Escherichia coli/metabolismo , Etanidazol/análogos & derivados , Hidrocarburos Fluorados/metabolismo , Imagen Molecular/métodos , Nitroimidazoles/uso terapéutico , Nitrorreductasas/metabolismo , Tomografía de Emisión de Positrones/métodos , Profármacos/uso terapéutico , Antineoplásicos/uso terapéutico , Técnicas Biosensibles/métodos , Hipoxia de la Célula/fisiología , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Etanidazol/química , Etanidazol/metabolismo , Terapia Genética/métodos , Células HCT116 , Humanos , Hidrocarburos Fluorados/química , Imidazoles/farmacología , Imidazoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nitroimidazoles/farmacología , Nitrorreductasas/genética , Profármacos/metabolismo , Ingeniería de Proteínas
10.
Biotechnol Lett ; 41(10): 1155-1162, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31392514

RESUMEN

OBJECTIVES: To survey a library of over-expressed nitroreductases to identify those most active with 2,4- and 2,6-dinitrotoluene substrates, as promising candidates for phytoremediation of soils and groundwater contaminated with poly-nitro toluene pollutants. RESULTS: To indirectly monitor dinitrotoluene reduction we implemented a nitroblue tetrazolium dye screen to compare relative rates of NADPH consumption for 58 nitroreductase candidates, over-expressed in a nitroreductase-deleted strain of Escherichia coli. Although the screen only provides activity data at a single substrate concentration, by altering the substrate concentration and duration of incubation we showed we could first distinguish between more-active and less-active enzymes and then discriminate between the relative rates of reduction exhibited by the most active nitroreductases in the collection. We observed that members of the NfsA and NfsB nitroreductase families were the most active with 2,4-dinitrotoluene, but that only members of the NfsB family reduced 2,6-dinitrotoluene effectively. Two NfsB family members, YfkO from Bacillus subtilis and NfsB from Vibrio vulnificus, appeared especially effective with these substrates. Purification of both enzymes as His6-tagged recombinant proteins enabled in vitro determination of Michaelis-Menten kinetic parameters with each dinitrotoluene substrate. CONCLUSIONS: Vibrio vulnificus NfsB is a particularly promising candidate for bioremediation applications, being ca. fivefold more catalytically efficient with 2,4-dinitrotoluene and over 26-fold more active with 2,6-dinitrotoluene than the benchmark E. coli nitroreductases NfsA and NfsB.


Asunto(s)
Bacillus subtilis/enzimología , Biodegradación Ambiental , Dinitrobencenos/metabolismo , Contaminantes Ambientales/metabolismo , Nitrorreductasas/análisis , Vibrio vulnificus/enzimología , Cinética , Nitrorreductasas/aislamiento & purificación , Oxidación-Reducción
11.
ACS Synth Biol ; 7(11): 2514-2517, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30376298

RESUMEN

Encapsulins are robust and engineerable proteins that form hollow, nanosized, icosahedral capsids, making them attractive vehicles for drug delivery, scaffolds for synthetic bionanoreactors, and artificial organelles. A major limitation of native encapsulins is the small size of pores in the protein shell. At 3 Å diameter, these pores impose significant restrictions on the molecular weight and diffusion rate of potential substrates. By redesigning the pore-forming loop region in encapsulin from Thermotoga maritima, we successfully enlarged pore diameter up to an estimated 11 Å and increased mass transport rates by 7-fold as measured by lanthanide ion diffusion assay. Our study demonstrates the high tolerance of encapsulin for protein engineering and has created a set of novel, functionally improved scaffolds for applications as bionanoreactors.


Asunto(s)
Proteínas Bacterianas/química , Nanoestructuras/química , Ingeniería de Proteínas , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Difusión , Portadores de Fármacos/química , Iones/química , Porosidad , Terbio/química , Terbio/metabolismo , Thermotoga maritima/metabolismo
12.
Cell Chem Biol ; 24(3): 391-403, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262557

RESUMEN

Gene-directed enzyme-prodrug therapy (GDEPT) is a promising anti-cancer strategy. However, inadequate prodrugs, inefficient prodrug activation, and a lack of non-invasive imaging capabilities have hindered clinical progression. To address these issues, we used a high-throughput Escherichia coli platform to evolve the multifunctional nitroreductase E. coli NfsA for improved activation of a promising next-generation prodrug, PR-104A, as well as clinically relevant nitro-masked positron emission tomography-imaging probes EF5 and HX4, thereby addressing a critical and unmet need for non-invasive bioimaging in nitroreductase GDEPT. The evolved variant performed better in E. coli than in human cells, suggesting optimal usefulness in bacterial rather than viral GDEPT vectors, and highlighting the influence of intracellular environs on enzyme function and the shaping of promiscuous enzyme activities within the "black box" of in vivo evolution. We provide evidence that the dominant contribution to improved PR-104A activity was enhanced affinity for the prodrug over-competing intracellular substrates.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Neoplasias/terapia , Compuestos de Mostaza Nitrogenada/metabolismo , Nitrorreductasas/metabolismo , Profármacos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Etanidazol/análogos & derivados , Etanidazol/química , Etanidazol/metabolismo , Células HCT116 , Humanos , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/metabolismo , Imidazoles/química , Imidazoles/metabolismo , Concentración 50 Inhibidora , Metronidazol/química , Metronidazol/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Neoplasias/diagnóstico , Neoplasias/patología , Compuestos de Mostaza Nitrogenada/química , Nitrorreductasas/química , Nitrorreductasas/genética , Tomografía de Emisión de Positrones , Profármacos/química , Estructura Terciaria de Proteína , Especificidad por Sustrato , Triazoles/química , Triazoles/metabolismo
13.
Arch Biochem Biophys ; 614: 14-22, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986535

RESUMEN

NfsA, a major FMN-associated nitroreductase of E. coli, reduces nitroaromatic compounds via consecutive two-electron transfers. NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy. However, the catalytic mechanism of NfsA is poorly characterized. Here we examined the NADPH-dependent reduction of quinones (n = 16) and nitroaromatic compounds (n = 12) by NfsA. We confirmed a general "ping-pong" reaction scheme, and preliminary rapid reaction studies of the enzyme reduction by NADPH showed that this step is much faster than the steady-state turnover number, i.e., the enzyme turnover is limited by the oxidative half-reaction. The reactivity of nitroaromatic compounds (log kcat/Km) followed a linear dependence on their single-electron reduction potential (E17), indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones was lower than that of nitroaromatics having similar E17 values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones, consistent with observations previously made for the group B nitroreductase of Enterobacter cloacae. We present evidence that the reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Nitrorreductasas/química , Quinonas/química , Catálisis , Dominio Catalítico , Transporte de Electrón , Electrones , Concentración de Iones de Hidrógeno , Cinética , NADP/química , Nitrógeno/química , Oxidación-Reducción , Oxígeno/química , Unión Proteica , Especificidad por Sustrato , Temperatura
14.
Biochem Pharmacol ; 116: 176-87, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27453434

RESUMEN

The clinical stage anti-cancer agent PR-104 has potential utility as a cytotoxic prodrug for exogenous bacterial nitroreductases expressed from replicating vector platforms. However substrate selectivity is compromised due to metabolism by the human one- and two-electron oxidoreductases cytochrome P450 oxidoreductase (POR) and aldo-keto reductase 1C3 (AKR1C3). Using rational drug design we developed a novel mono-nitro analog of PR-104A that is essentially free of this off-target activity in vitro and in vivo. Unlike PR-104A, there was no biologically relevant cytotoxicity in cells engineered to express AKR1C3 or POR, under aerobic or anoxic conditions, respectively. We screened this inert prodrug analog, SN34507, against a type I bacterial nitroreductase library and identified E. coli NfsA as an efficient bioactivator using a DNA damage response assay and recombinant enzyme kinetics. Expression of E. coli NfsA in human colorectal cancer cells led to selective cytotoxicity to SN34507 that was associated with cell cycle arrest and generated a robust 'bystander effect' at tissue-like cell densities when only 3% of cells were NfsA positive. Anti-tumor activity of SN35539, the phosphate pre-prodrug of SN34507, was established in 'mixed' tumors harboring a minority of NfsA-positive cells and demonstrated marked tumor control following heterogeneous suicide gene expression. These experiments demonstrate that off-target metabolism of PR-104 can be avoided and identify the suicide gene/prodrug partnership of E. coli NfsA/SN35539 as a promising combination for development in armed vectors.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Antineoplásicos Alquilantes/uso terapéutico , Benzamidas/uso terapéutico , Carcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Diseño de Fármacos , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Mesilatos/uso terapéutico , Modelos Moleculares , Organofosfonatos/uso terapéutico , Profármacos/uso terapéutico , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , Activación Metabólica/efectos de los fármacos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Animales , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacología , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Carcinoma/metabolismo , Carcinoma/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HCT116 , Humanos , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/genética , Mesilatos/química , Mesilatos/metabolismo , Mesilatos/farmacología , Ratones Desnudos , Simulación del Acoplamiento Molecular , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Organofosfonatos/química , Organofosfonatos/metabolismo , Organofosfonatos/farmacología , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacología , Distribución Aleatoria , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Organismos Libres de Patógenos Específicos , Especificidad por Sustrato , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Biochem J ; 471(2): 131-53, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26431849

RESUMEN

This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.


Asunto(s)
Aziridinas/uso terapéutico , Proteínas de Escherichia coli , Terapia Genética/métodos , Neoplasias Experimentales/terapia , Nitrorreductasas , Profármacos/uso terapéutico , Animales , Evolución Molecular Dirigida , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/uso terapéutico , Humanos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Nitrorreductasas/biosíntesis , Nitrorreductasas/genética , Nitrorreductasas/uso terapéutico
16.
Biotechnol Lett ; 37(2): 383-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25257589

RESUMEN

Directed enzyme evolution is now a routine approach to improve desirable biocatalytic properties. When only a low-throughput screen is available to detect improved variants from a mutant gene library, it is imperative that cloning efficiency be maximized during library synthesis to avoid wasting effort screening empty plasmids. To achieve this we developed pUCXKT, a gain-of-function positive selection expression vector. Insertion of genes amplified using a specialized downstream PCR primer restores key regulatory and genetic elements necessary for co-expression of a kanamycin resistance marker adjacent to the pUCXKT cloning region. We show that pUCXKT enables 100 % cloning efficiency as well as high-level expression of inserted genes. Unlike previous positive selection expression plasmids, the strategy we used to design pUCXKT is readily adaptable to different vector backbones, antibiotic marker genes, and multiple cloning regions.


Asunto(s)
Clonación Molecular/métodos , Farmacorresistencia Bacteriana/genética , Vectores Genéticos/genética , Plásmidos/genética , Evolución Molecular Dirigida , Escherichia coli/genética
17.
Methods Mol Biol ; 1179: 83-101, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055772

RESUMEN

Site-saturation mutagenesis is a proven strategy for generating high-quality variant gene libraries of a defined size. Variation is introduced via incorporation of degenerate base combinations at specific codon locations, giving rise to a precise series of amino acid substitutions in the encoded protein. Here we describe a simple and efficient overlap PCR protocol for the introduction of degenerate bases at either single or multiple codon locations. The resulting libraries can then be directly screened for improved protein function as either an independent directed evolution study or an adjunct to random mutagenesis strategies (such as error-prone PCR) that are, in isolation, unlikely to access the full repertoire of possible amino acid substitutions at any given position.


Asunto(s)
Mutagénesis/fisiología , Reacción en Cadena de la Polimerasa/métodos , Mutagénesis/genética
18.
Cancers (Basel) ; 5(3): 985-97, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24202330

RESUMEN

Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the "gold standard" nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.

19.
Biochem Pharmacol ; 85(8): 1091-103, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23399641

RESUMEN

Two potentially complementary approaches to improve the anti-cancer strategy gene-directed enzyme prodrug therapy (GDEPT) are discovery of more efficient prodrug-activating enzymes, and development of more effective prodrugs. Here we demonstrate the utility of a flexible screening system based on the Escherichia coli SOS response to evaluate novel nitroreductase enzymes and prodrugs in concert. To achieve this, a library of 47 candidate genes representing 11 different oxidoreductase families was created and screened to identify the most efficient activators of two different nitroaromatic prodrugs, CB1954 and PR-104A. The most catalytically efficient nitroreductases were found in the NfsA and NfsB enzyme families, with NfsA homologues generally more active than NfsB. Some members of the AzoR, NemA and MdaB families also exhibited low-level activity with one or both prodrugs. The results of SOS screening in our optimised E. coli reporter strain SOS-R2 were generally predictive of the ability of nitroreductase candidates to sensitise E. coli to CB1954, and of the kcat/Km for each prodrug substrate at a purified protein level. However, we also found that not all nitroreductases express stably in human (HCT-116 colon carcinoma) cells, and that activity at a purified protein level did not necessarily predict activity in stably transfected HCT-116. These results highlight a need for all enzyme-prodrug partners for GDEPT to be assessed in the specific context of the vector and cell line that they are intended to target. Nonetheless, our oxidoreductase library and optimised screens provide valuable tools to identify preferred nitroreductase-prodrug combinations to advance to preclinical evaluation.


Asunto(s)
Antineoplásicos/metabolismo , Aziridinas/metabolismo , Escherichia coli/enzimología , Biblioteca de Genes , Terapia Genética , Compuestos de Mostaza Nitrogenada/metabolismo , Nitrorreductasas/genética , Profármacos/metabolismo , Células HCT116 , Humanos , Nitrorreductasas/aislamiento & purificación , Respuesta SOS en Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...