Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Clin Invest ; 130(2): 754-767, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31671076

RESUMEN

The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.


Asunto(s)
Proteínas Musculares/metabolismo , Relajación Muscular , Miopatías Nemalínicas/metabolismo , Sarcómeros/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Sarcómeros/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
J Physiol ; 597(17): 4521-4531, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31314138

RESUMEN

Titin functions as a molecular spring, and cardiomyocytes are able, through splicing, to control the length of titin. We hypothesized that together with diastolic [Ca2+ ], titin-based stretch pre-activates cardiomyocytes during diastole and is a major determinant of force production in the subsequent contraction. Through this mechanism titin would play an important role in active force development and length-dependent activation. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) result in expression of large, highly compliant titin isoforms. We measured single cardiomyocyte work loops that mimic the cardiac cycle in wild-type (WT) and heterozygous (HET) RBM20-deficient rats. In addition, we studied the role of diastolic [Ca2+ ] in membrane-permeabilized WT and HET cardiomyocytes. Intact cardiomyocytes isolated from HET left ventricles were unable to produce normal levels of work (55% of WT) at low pacing frequencies, but this difference disappeared at high pacing frequencies. Length-dependent activation (force-sarcomere length relationship) was blunted in HET cardiomyocytes, but the force-end-diastolic force relationship was not different between HET and WT cardiomyocytes. To delineate the effects of diastolic [Ca2+ ] and titin pre-activation on force generation, measurements were performed in detergent-permeabilized cardiomyocytes. Cardiac twitches were simulated by transiently exposing permeabilized cardiomyocytes to 2 µm Ca2+ . Increasing diastolic [Ca2+ ] from 1 to 80 nm increased force development twofold in WT. Higher diastolic [Ca2+ ] was needed in HET. These findings are consistent with our hypothesis that pre-activation increases active force development. Highly compliant titin allows cells to function at higher diastolic [Ca2+ ].


Asunto(s)
Calcio/metabolismo , Conectina/metabolismo , Diástole/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Animales , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Heterocigoto , Masculino , Proteínas Musculares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Sarcómeros/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA