Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Front Bioeng Biotechnol ; 11: 1250348, 2023.
Article En | MEDLINE | ID: mdl-38026846

Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.

2.
Biomacromolecules ; 23(6): 2635-2646, 2022 06 13.
Article En | MEDLINE | ID: mdl-35656981

Peripheral nerve regeneration across large gaps remains clinically challenging and scaffold design plays a key role in nerve tissue engineering. One strategy to encourage regeneration has utilized nanofibers or conduits to exploit contact guidance within the neural regenerative milieu. Herein, we report the effect of nanofiber topography on two key aspects of regeneration: Schwann cell migration and neurite extension. Substrates possessing distinct diameter distributions (300 ± 40 to 900 ± 70 nm) of highly aligned poly(ε-caprolactone) nanofibers were fabricated by touch-spinning. Cell migratory behavior and contact guidance were then evaluated both at the tissue level using dorsal root ganglion tissue explants and the cellular level using dissociated Schwann cells. Explant studies showed that Schwann cells emigrated significantly farther on fibers than control. However, both Schwann cells and neurites emigrated from the tissue explants directionally along the fibers regardless of their diameter, and the data were characterized by high variation. At the cellular level, dissociated Schwann cells demonstrated biased migration in the direction of fiber alignment and exhibited a significantly higher biased velocity (0.2790 ± 0.0959 µm·min-1) on 900 ± 70 nm fibers compared to other nanofiber groups and similar to the velocity found during explant emigration on 900 nm fibers. Therefore, aligned, nanofibrous scaffolds of larger diameters (900 ± 70 nm) may be promising materials to enhance various aspects of nerve regeneration via contact guidance alone. While cells track along with the fibers, this contact guidance is bidirectional along the fiber, moving in the plane of alignment. Therefore, the next critical step to direct regeneration is to uncover haptotactic cues that enhance directed migration.


Nanofibers , Ganglia, Spinal , Nanofibers/chemistry , Nerve Regeneration , Schwann Cells , Tissue Engineering , Tissue Scaffolds/chemistry , Touch
3.
Cell ; 184(3): 561-565, 2021 02 04.
Article En | MEDLINE | ID: mdl-33503447

Our nationwide network of BME women faculty collectively argue that racial funding disparity by the National Institutes of Health (NIH) remains the most insidious barrier to success of Black faculty in our profession. We thus refocus attention on this critical barrier and suggest solutions on how it can be dismantled.


Biomedical Research/economics , Black or African American , Financial Management , Research Personnel/economics , Humans , National Institutes of Health (U.S.)/economics , Racial Groups , United States
4.
Biomacromolecules ; 20(12): 4494-4501, 2019 12 09.
Article En | MEDLINE | ID: mdl-31721566

Substrates with combinations of topographical and biochemical cues are highly useful for a number of fundamental biological investigations. Tethered molecular concentration gradients in particular are highly desired for a number of biomedical applications including cell migration. Herein, we report a versatile method for the fabrication of aligned nanofiber substrates with a tunable concentration gradient along the fiber direction. 4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone (εCL) and allyl-functionalized ε-caprolactone (AεPCL), which yielded a well-defined polymer with orthogonal functional handles. These materials were fabricated into aligned nanofiber substrates via touch-spinning. Fibers were modified post-spinning with a concentration gradient of fluorescently labeled dye via a light activated thiol-ene reaction through a photomask. As a demonstration, the cell adhesive peptide RGD was chemically tethered to the fiber surface at a second functionalization site via strain-promoted azide-alkyne cycloaddition (SPAAC). This novel approach affords fabrication of dual functional nanofiber substrates.


Nanofibers/chemistry , Oligopeptides/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Cycloaddition Reaction
5.
Biomaterials ; 218: 119335, 2019 10.
Article En | MEDLINE | ID: mdl-31302351

Neuroregeneration following peripheral nerve injury is largely mediated by Schwann cells (SC), the principal glial cell that supports neurons in the peripheral nervous system. Axonal regeneration in vivo is limited by the extent of SC migration into the gap between the proximal and distal nerve, however, little is known regarding the principal driving forces for SC migration. Engineered microenvironments, such as molecular and protein gradients, play a role in the migration of many cell types, including cancer cells and fibroblasts. However, haptotactic strategies have not been applied widely to SC. Herein, a series of tethered laminin-derived peptides were analyzed for their influence on SC adhesion, proliferation, and alignment. Concentration gradient substrates were fabricated using a controlled vapor deposition method, followed by covalent peptide attachment via a thiol-ene reaction, and characterized by X-ray photoelectron spectroscopy (XPS) and MALDI-MS imaging. While tethered RGD peptides supported SC adhesion and proliferation, concentration gradients of RGD had little influence on biased SC directional migration. In contrast, YIGSR promoted less SC attachment than RGD, yet YIGSR peptide gradients directed migration with a strong bias to the concentration profile. With YIGSR peptide, overall speed increased with the steepness of the peptide concentration profile. YIGSR gradients had no haptotactic effect on rat dermal fibroblast migration, in contrast to fibroblast migration on RGD gradients. The response of SC to these tethered peptide gradients will guide the development of translationally relevant constructs designed to facilitate endogenous SC infiltration into defects for nerve regeneration.


Cell Movement/drug effects , Laminin/chemistry , Peptides/chemistry , Peptides/pharmacology , Schwann Cells/cytology , Schwann Cells/drug effects , Actins/metabolism , Animals , Cell Adhesion/drug effects , Chemotaxis/drug effects , Female , Photoelectron Spectroscopy , Rats, Sprague-Dawley , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Biomacromolecules ; 20(3): 1443-1454, 2019 03 11.
Article En | MEDLINE | ID: mdl-30726667

Stem cell differentiation toward a specific lineage is controlled by its microenvironment. Polymer scaffolds have long been investigated to provide microenvironment cues; however, synthetic polymers lack the specific signaling motifs necessary to direct cellular responses on their own. In this study, we fabricated random and aligned poly(ε-caprolactone) nanofiber substrates, surface-functionalized with RGD viastrain-promoted azide-alkyne cycloaddition, that were used to investigate the role of a covalently tethered bioactive peptide (RGD) and nanofiber orientation on neural differentiation of mouse embryonic stem cells. Gene and protein expression showed neural differentiation progression over 14 days, with similar expression on RGD random and aligned nanofibers for neurons and glia over time. The high levels of glial fibrillary acidic protein expression at early time points were indicative of neural progenitors, and occurred earlier than on controls or in previous reports. These results highlight the influence of RGD binding versus topography in differentiation.


Cell Differentiation , Glial Fibrillary Acidic Protein/metabolism , Mouse Embryonic Stem Cells/cytology , Nanofibers/chemistry , Neurons/cytology , Oligopeptides/chemistry , Animals , Mice , Mouse Embryonic Stem Cells/metabolism
7.
Acta Biomater ; 75: 129-139, 2018 07 15.
Article En | MEDLINE | ID: mdl-29879551

Substrates for embryonic stem cell culture are typified by poorly defined xenogenic, whole proteins or cellular components that are difficult and expensive to generate, characterize, and recapitulate. Herein, the generation of well-defined scaffolds of Gly-Tyr-Ile-Gly-Ser-Arg (GYIGSR) peptide-functionalized poly(ε-caprolactone) (PCL) aligned nanofibers are used to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells (mESCs). Gene expression trends and immunocytochemistry analysis were similar to laminin-coated glass, and indicated an earlier differentiation progression than D3 mESCs on laminin. Further, GYIGSR-functionalized nanofiber substrates yielded an increased gene expression of Sox1, a neural progenitor cell marker, and Tubb3, Cdh2, Syp, neuronal cell markers, at early time points. In addition, guidance of neurites was found to parallel the fiber direction. We demonstrate the fabrication of a well-defined, xeno-free functional nanofiber scaffold and demonstrates its use as a surrogate for xenogenic and complex matrixes currently used for the neural differentiation of stem cells ex vivo. STATEMENT OF SIGNIFICANCE: In this paper, we report the use of GYIGSR-functionalized poly(ε-caprolactone) aligned nanofibers as a tool to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells. The results indicate that functional nanofiber substrates promote faster differentiation than laminin coated substrates. The data suggest that aligned nanofibers and post-electrospinning surface modification with bioactive species can be combined to produce translationally relevant xeno-free substrates for stem cell therapy. Future development efforts are focused on additional bioactive species that are able to function as surrogates for other xenogenic factors found in differentiation media.


Cell Differentiation , Mouse Embryonic Stem Cells/metabolism , Nanofibers/chemistry , Neurons/metabolism , Peptides/chemistry , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Gene Expression Regulation , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neurons/cytology
8.
J Neurophysiol ; 115(1): 602-16, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26510759

In many instances of extensive nerve damage, the injured nerve never adequately heals, leaving lack of nerve function. Electrical stimulation (ES) has been shown to increase the rate and orient the direction of neurite growth, and is a promising therapy. However, the mechanism in which ES affects neuronal growth is not understood, making it difficult to compare existing ES protocols or to design and optimize new protocols. We hypothesize that ES acts by elevating intracellular calcium concentration ([Ca(2+)]i) via opening voltage-dependent Ca(2+) channels (VDCCs). In this work, we have created a computer model to estimate the ES Ca(2+) relationship. Using COMSOL Multiphysics, we modeled a small dorsal root ganglion (DRG) neuron that includes one Na(+) channel, two K(+) channels, and three VDCCs to estimate [Ca(2+)]i in the soma and growth cone. As expected, the results show that an ES that generates action potentials (APs) can efficiently raise the [Ca(2+)]i of neurons. More interestingly, our simulation results show that sub-AP ES can efficiently raise neuronal [Ca(2+)]i and that specific high-voltage ES can preferentially raise [Ca(2+)]i in the growth cone. The intensities and durations of ES on modeled growth cone calcium rise are consistent with directionality and orientation of growth cones experimentally shown by others. Finally, this model provides a basis to design experimental ES pulse parameters, including duration, intensity, pulse-train frequency, and pulse-train duration to efficiently raise [Ca(2+)]i in neuronal somas or growth cones.


Calcium Channels/physiology , Calcium/metabolism , Electric Stimulation/methods , Ganglia, Spinal/physiology , Growth Cones/physiology , Models, Neurological , Action Potentials , Animals , Computer Simulation , Ganglia, Spinal/metabolism , Growth Cones/metabolism , Humans , Membrane Potentials , Neurons/metabolism , Neurons/physiology
9.
Biomacromolecules ; 16(1): 357-63, 2015 Jan 12.
Article En | MEDLINE | ID: mdl-25479181

Using metal-free click chemistry and oxime condensation methodologies, GRGDS and YIGSR peptides were coupled to random and aligned degradable nanofiber networks postelectrospinning in a one-pot reaction. The bound peptides are bioactive, as demonstrated by Schwann cell attachment and proliferation, and the inclusion of YIGSR with GRGDS alters the expression of the receptor for YIGSR. Additionally, aligned nanofibers act as a potential guidance cue by increasing the aspect ratio and aligning the actin filaments, which suggest that peptide-functionalized scaffolds would be useful to direct SCs for peripheral nerve regeneration.


Nanofibers/chemistry , Oligopeptides/pharmacology , Schwann Cells/cytology , Animals , Biodegradation, Environmental , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Click Chemistry , Rats , Schwann Cells/drug effects , Schwann Cells/physiology , Tissue Engineering , Tissue Scaffolds
10.
Ann Biomed Eng ; 42(6): 1282-91, 2014 Jun.
Article En | MEDLINE | ID: mdl-24710795

Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 h in culture media containing NGF (10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8-10 V/m DC, then incubated for 24 h with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment.


Collagen/chemistry , Ganglia, Spinal/metabolism , Neurites/metabolism , Tissue Scaffolds/chemistry , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Chick Embryo , Electric Stimulation , Ganglia, Spinal/cytology , Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism
...