Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Signal ; 17(826): eadd4671, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442200

RESUMEN

Cells rely on activity-dependent protein-protein interactions to convey biological signals. For chimeric antigen receptor (CAR) T cells containing a 4-1BB costimulatory domain, receptor engagement is thought to stimulate the formation of protein complexes similar to those stimulated by T cell receptor (TCR)-mediated signaling, but the number and type of protein interaction-mediating binding domains differ between CARs and TCRs. Here, we performed coimmunoprecipitation mass spectrometry analysis of a second-generation, CD19-directed 4-1BB:ζ CAR (referred to as bbζCAR) and identified 128 proteins that increased their coassociation after target engagement. We compared activity-induced TCR and CAR signalosomes by quantitative multiplex coimmunoprecipitation and showed that bbζCAR engagement led to the activation of two modules of protein interactions, one similar to TCR signaling that was more weakly engaged by bbζCAR as compared with the TCR and one composed of TRAF signaling complexes that was not engaged by the TCR. Batch-to-batch and interindividual variations in production of the cytokine IL-2 correlated with differences in the magnitude of protein network activation. Future CAR T cell manufacturing protocols could measure, and eventually control, biological variation by monitoring these signalosome activation markers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Antígenos CD19/genética , Membrana Celular , Receptores de Antígenos de Linfocitos T/genética
2.
Curr Oncol Rep ; 25(8): 847-855, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160547

RESUMEN

PURPOSE OF REVIEW: Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS: We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Neoplasias del Sistema Nervioso Central/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T
3.
Blood Adv ; 7(15): 4218-4232, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36607839

RESUMEN

CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfocitos T , Niño , Humanos , Epigenoma , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antígenos CD19 , Células Madre Hematopoyéticas
4.
Neoplasia ; 36: 100870, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36599192

RESUMEN

Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites. Locoregional CAR T cell delivery via infusion through an intracranial catheter is currently under study in multiple early phase clinical trials. Here, we describe the Seattle Children's single-institution experience including the multidisciplinary process for the preparation of successful, repetitive intracranial T cell infusion for children and the catheter-related safety of our 307 intracranial CAR T cell doses.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Niño , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/terapia , Catéteres
5.
Blood Adv ; 7(6): 1001-1010, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36006611

RESUMEN

There is a need for biomarkers to predict and measure the severity of immune effector cell-associated neurotoxicity syndrome (ICANS). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are well-validated biomarkers of astroglial and neuronal injury, respectively. We hypothesized that pretreatment GFAP and NfL levels can predict the risk of subsequent ICANS and that increases in GFAP and NfL levels during treatment reflect ICANS severity. We measured cerebrospinal fluid GFAP (cGFAP) and NfL (cNfL) along with serum NfL (sNfL) levels at pretreatment and day 7 to 10 after chimeric antigen receptor (CAR) T-cell infusion in 3 pediatric cohorts treated with CD19- or CD19/CD22-directed CAR T cells. cGFAP and cNfL levels increased during grade ≥1 ICANS in patients treated with CD19-directed CAR T cells but not in those who received CD19/CD22-directed CAR T cells. The sNfL levels did not increase during ICANS. Prelymphodepletion cGFAP, cNfL, and sNfL levels were not predictive of subsequent ICANS. Elevated baseline cGFAP levels were associated with a history of transplantation. Patients with prior central nervous system (CNS) radiation had higher cNfL levels, and elevated baseline sNfL levels were associated with a history of peripheral neuropathy. Thus, cGFAP and cNfL may be useful biomarkers for measuring the severity of CNS injury during ICANS in children. Elevated baseline levels of cGFAP, cNfL, and sNfL likely reflect the cumulative injury to the central and peripheral nervous systems from prior treatment. However, levels of any of the 3 biomarkers before CAR T-cell infusion did not predict the risk of ICANS.


Asunto(s)
Síndromes de Neurotoxicidad , Linfocitos T , Humanos , Niño , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios , Síndromes de Neurotoxicidad/diagnóstico , Síndromes de Neurotoxicidad/etiología , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19
6.
Cancer Discov ; 13(1): 114-131, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259971

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Antígenos B7 , Neoplasias del Tronco Encefálico/terapia , Linfocitos T
7.
Cancer Immunol Res ; 10(7): 856-870, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580141

RESUMEN

T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 can induce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). The durability of remission is related to the length of time the CAR T cells persist. Efforts to understand differences in persistence have focused on the CAR construct, in particular the costimulatory signaling module of the chimeric receptor. We previously reported a robust intent-to-treat product manufacturing success rate and remission induction rate in children and young adults with recurrent/refractory B-ALL using the SCRI-CAR19v1 product, a second-generation CD19-specific CAR with 4-1BB costimulation coexpressed with the EGFRt cell-surface tag (NCT02028455). Following completion of the phase I study, two changes to CAR T-cell manufacturing were introduced: switching the T-cell activation reagent and omitting midculture EGFRt immunomagnetic selection. We tested the modified manufacturing process and resulting product, designated SCRI-CAR19v2, in a cohort of 21 subjects on the phase II arm of the trial. Here, we describe the unanticipated enhancement in product performance resulting in prolonged persistence and B-cell aplasia and improved leukemia-free survival with SCRI-CAR19v2 as compared with SCRI-CAR19v1.


Asunto(s)
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19 , Niño , Ensayos Clínicos Fase I como Asunto , Humanos , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Recurrencia , Linfocitos T , Adulto Joven
8.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35158790

RESUMEN

PURPOSE: Rhabdomyosarcoma (RMS) exhibits a complex prognostic algorithm based on histologic, biologic and clinical parameters. The embryonal (ERMS) and spindle cell-sclerosing RMS (SRMS) histologic subtypes warrant further studies due to their heterogenous genetic background and variable clinical behavior. NanoString digital profiling methods have been previously highlighted as robust novel methods to detect protein and microRNA expression in several cancers but not in RMS. METHODS/PATIENTS: To identify prognostic biomarkers, we categorized 12 ERMS and SRMS tumor cases into adverse (n = 5) or favorable (n = 7) prognosis groups and analyzed their signaling pathways and microRNA profiles. The digital spatial profiling of protein and microRNA analysis was performed on formalin-fixed, paraffin-embedded (FFPE) tumor tissue using NanoString technology. RESULTS: The detectable expression of several component members of the PI3K/AKT, MAPK and apoptosis signaling pathways was highlighted in RMS, including INPP4B, Pan-AKT, MET, Pan-RAS, EGFR, phospho-p90 RSK, p44/42 ERK1/2, BAD, BCL-XL, cleaved caspase-9, NF1, PARP and p53. Compared to cases with favorable prognosis, the adverse-prognosis tumor samples had significantly increased expression of INPP4B, which was confirmed with traditional immunohistochemistry. The analysis of microRNA profiles revealed that, out of 798 microRNAs assessed, 228 were overexpressed and 134 downregulated in the adverse prognosis group. Significant over-expression of oncogenic/tumor suppressor miR-3144-3p, miR-612, miR-302d-3p, miR-421, miR-548ar-5p and miR-548y (p < 0.05) was noted in the adverse prognosis group. CONCLUSION: This study highlights the utility of NanoString digital profiling methods in RMS, where it can detect distinct molecular signatures with the expression of signaling pathways and microRNAs from FFPE tumor tissue that may help identify prognostic biomarkers of interest. The overexpression of INPP4B and miR-3144-3p, miR-612, miR-302d-3p, miR-421, miR-548y and miR-548ar-5p may be associated with worse overall survival in ERMS and SRMS.

9.
Cytotherapy ; 24(2): 193-204, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711500

RESUMEN

Immune effector cell (IEC) therapies have revolutionized our approach to relapsed B-cell malignancies, and interest in the investigational use of IECs is rapidly expanding into other diseases. Current challenges in the analysis of IEC therapies include small sample sizes, limited access to clinical trials and a paucity of predictive biomarkers of efficacy and toxicity associated with IEC therapies. Retrospective and prospective multi-center cell therapy trials can assist in overcoming these barriers through harmonization of clinical endpoints and correlative assays for immune monitoring, allowing additional cross-trial analysis to identify biomarkers of failure and success. The Consortium for Pediatric Cellular Immunotherapy (CPCI) offers a unique platform to address the aforementioned challenges by delivering cutting-edge cell and gene therapies for children through multi-center clinical trials. Here the authors discuss some of the important pre-analytic variables, such as biospecimen collection and initial processing procedures, that affect biomarker assays commonly used in IEC trials across participating CPCI sites. The authors review the recent literature and provide data to support recommendations for alignment and standardization of practices that can affect flow cytometry assays measuring immune effector function as well as interpretation of cytokine/chemokine data. The authors also identify critical gaps that often make parallel comparisons between trials difficult or impossible.


Asunto(s)
Inmunoterapia , Recurrencia Local de Neoplasia , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Humanos , Estudios Prospectivos , Estudios Retrospectivos
10.
Nat Med ; 27(9): 1544-1552, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34253928

RESUMEN

Locoregional delivery of chimeric antigen receptor (CAR) T cells has resulted in objective responses in adults with glioblastoma, but the feasibility and tolerability of this approach is yet to be evaluated for pediatric central nervous system (CNS) tumors. Here we show that engineering of a medium-length CAR spacer enhances the therapeutic efficacy of human erb-b2 receptor tyrosine kinase 2 (HER2)-specific CAR T cells in an orthotopic xenograft medulloblastoma model. We translated these findings into BrainChild-01 ( NCT03500991 ), an ongoing phase 1 clinical trial at Seattle Children's evaluating repetitive locoregional dosing of these HER2-specific CAR T cells to children and young adults with recurrent/refractory CNS tumors, including diffuse midline glioma. Primary objectives are assessing feasibility, safety and tolerability; secondary objectives include assessing CAR T cell distribution and disease response. In the outpatient setting, patients receive infusions via CNS catheter into either the tumor cavity or the ventricular system. The initial three patients experienced no dose-limiting toxicity and exhibited clinical, as well as correlative laboratory, evidence of local CNS immune activation, including high concentrations of CXCL10 and CCL2 in the cerebrospinal fluid. This interim report supports the feasibility of generating HER2-specific CAR T cells for repeated dosing regimens and suggests that their repeated intra-CNS delivery might be well tolerated and activate a localized immune response in pediatric and young adult patients.


Asunto(s)
Glioblastoma/terapia , Inmunoterapia Adoptiva/efectos adversos , Receptor ErbB-2/genética , Receptores Quiméricos de Antígenos/genética , Antígenos CD19/inmunología , Quimiocina CCL2/genética , Quimiocina CXCL10/genética , Femenino , Glioblastoma/líquido cefalorraquídeo , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Inmunidad/genética , Inmunidad/inmunología , Estimación de Kaplan-Meier , Masculino , Recurrencia Local de Neoplasia/líquido cefalorraquídeo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/terapia , Receptor ErbB-2/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Child Neurol ; 36(9): 760-767, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33829918

RESUMEN

Because of the COVID-19 pandemic, in-person services for individuals with neurodevelopmental disabilities were disrupted globally, resulting in a transition to remote delivery of services and therapies. For individuals with neurogenetic conditions, reliance on nonclinical caregivers to facilitate all therapies and care was unprecedented. The study aimed to (1) describe caregivers' reported impact on their dependent's services, therapies, medical needs, and impact on themselves as a result of the COVID-19 pandemic and (2) assess the relationship between the extent of disruption of services and the degree of self-reported caregiver burden. Two online questionnaires were completed by caregivers participating in Simons Searchlight in April and May 2020. Surveys were completed by caregivers of children or dependent adults with neurodevelopmental genetic conditions in Simons Searchlight. Caregivers reported that the impact of the COVID-19 pandemic moderately or severely disrupted services, therapies, or medical supports. The majority of caregivers were responsible for providing some aspect of therapy. Caregivers reported "feeling stressed but able to deal with problems as they arise," and reported lower anxiety at follow-up. Caregivers reported that telehealth services were not meeting the needs of those with complex medical needs. Future surveys will assess if and how medical systems, educational programs, therapists, and caregivers adapt to the challenges arising during the COVID-19 pandemic.


Asunto(s)
COVID-19/psicología , Carga del Cuidador/psicología , Cuidadores/psicología , Encuestas de Atención de la Salud/métodos , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Trastornos del Neurodesarrollo/terapia , Adolescente , Adulto , Cuidadores/estadística & datos numéricos , Niño , Preescolar , Femenino , Encuestas de Atención de la Salud/estadística & datos numéricos , Humanos , Masculino , Evaluación de Necesidades , Pandemias , SARS-CoV-2 , Encuestas y Cuestionarios
12.
Patient Educ Couns ; 103(1): 127-135, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521424

RESUMEN

OBJECTIVE: Growing use of clinical exome sequencing (CES) has led to an increased burden of genomic education. Self-guided educational tools can minimize the educational burden for genetic counselors (GCs). The effectiveness of these tools must be evaluated. METHODS: Parents of patients offered CES were randomized to watch educational videos before their visit or to receive routine care. Parents and GCs were surveyed about their experiences following the sessions. The responses of the video (n = 102) and no-video (n = 105) groups were compared. RESULTS: GCs reported no significant differences between parents in the video and no-video groups on genetics knowledge or CES knowledge. In contrast, parents' scores on genetics knowledge questions were lower in the video than no-video group (p = 0.007). Most parents reported the videos were informative, and the groups did not differ in satisfaction with GCs or decisions to have CES. CONCLUSION: GCs and parents perceived the videos to be beneficial. However, lower scores on genetics knowledge questions highlight the need for careful development of educational tools. PRACTICE IMPLICATIONS: Educational tools should be developed and assessed for effectiveness with the input of all stakeholders before widespread implementation. Better measures of the effectiveness of these educational tools are needed.


Asunto(s)
Consejeros , Asesoramiento Genético , Exoma , Humanos , Padres , Educación del Paciente como Asunto
13.
Adv Healthc Mater ; 8(2): e1801188, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549244

RESUMEN

Biomaterial properties that modulate T cell activation, growth, and differentiation are of significant interest in the field of cellular immunotherapy manufacturing. In this work, a new platform technology that allows for the modulation of various activation particle design parameters important for polyclonal T cell activation is presented. Artificial antigen presenting cells (aAPCs) are successfully created using supported lipid bilayers on various cell-templated silica microparticles with defined membrane fluidity and stimulating antibody density. This panel of aAPCs is used to probe the importance of activation particle shape, size, membrane fluidity, and stimulation antibody density on T cell outgrowth and differentiation. All aAPC formulations are able to stimulate T cell growth, and preferentially promote CD8+ T cell growth over CD4+ T cell growth when compared to commercially available pendant antibody-conjugated particles. T cells cultured with HeLa- and red blood cell-templated aAPCs have a less-differentiated and less-exhausted phenotype than those cultured with spherical aAPCs with matched membrane coatings when cultured for 14 days. These results support continued exploration of silica-supported lipid bilayers as an aAPC platform.


Asunto(s)
Células Presentadoras de Antígenos/citología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Membrana Dobles de Lípidos/química , Activación de Linfocitos , Anticuerpos , Células Presentadoras de Antígenos/fisiología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Diferenciación Celular , Eritrocitos/citología , Células HeLa , Humanos , Tamaño de la Partícula , Prueba de Estudio Conceptual , Dióxido de Silicio
14.
Cancer Immunol Res ; 5(12): 1062-1073, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29097419

RESUMEN

Although CD8+ T cells are critical for controlling tumors, how they are recruited and home to primary and metastatic lesions is incompletely understood. We characterized the homing receptor (HR) ligands on tumor vasculature to determine what drives their expression and their role in T-cell entry. The anatomic location of B16-OVA tumors affected the expression of E-selectin, MadCAM-1, and VCAM-1, whereas the HR ligands CXCL9 and ICAM-1 were expressed on the vasculature regardless of location. VCAM-1 and CXCL9 expression was induced by IFNγ-secreting adaptive immune cells. VCAM-1 and CXCL9/10 enabled CD8+ T-cell effectors expressing α4ß1 integrin and CXCR3 to enter both subcutaneous and peritoneal tumors, whereas E-selectin enabled E-selectin ligand+ effectors to enter subcutaneous tumors. However, MadCAM-1 did not mediate α4ß7+ effector entry into peritoneal tumors due to an unexpected lack of luminal expression. These data establish the relative importance of certain HRs expressed on activated effectors and certain HR ligands expressed on tumor vasculature in the effective immune control of tumors. Cancer Immunol Res; 5(12); 1062-73. ©2017 AACR.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/etiología , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Inmunidad Adaptativa , Animales , Biomarcadores , Línea Celular Tumoral , Quimiocina CXCL9/genética , Selectina E/genética , Selectina E/metabolismo , Integrina alfa4beta1/genética , Ligandos , Melanoma Experimental , Ratones , Modelos Biológicos , Receptores Mensajeros de Linfocitos/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética
15.
Am J Med Genet A ; 173(12): 3158-3164, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28941020

RESUMEN

The association between 1p32-p31 contiguous gene deletions and a distinct phenotype that includes anomalies of the corpus callosum, ventriculomegaly, developmental delay, seizures, and dysmorphic features has been long recognized and described. Recently, the observation of overlapping phenotypes in patients with chromosome translocations that disrupt NFIA (Nuclear factor I/A), a gene within this deleted region, and NFIA intragenic deletions has led to the hypothesis that NFIA is a critical gene within this region. The wide application and increasing accessibility of whole exome sequencing (WES) has helped identify new cases to support this hypothesis. Here, we describe four patients with loss-of-function variants in the NFIA gene identified through WES. The clinical presentation of these patients significantly overlaps with the phenotype described in previously reported cases of 1p32-p31 deletion syndrome, NFIA gene disruptions and intragenic NFIA deletions. Our cohort includes a mother and daughter as well as an unrelated individual who share the same nonsense variant (c.205C>T, p.Arg69Ter; NM_001145512.1). We also report a patient with a frameshift NFIA variant (c.159_160dupCC, p.Gln54ProfsTer49). We have compared published cases of 1p32-p31 microdeletion syndrome, translocations resulting in NFIA gene disruption, intragenic deletions, and loss-of-function mutations (including our four patients) to reveal that abnormalities of the corpus callosum, ventriculomegaly/hydrocephalus, macrocephaly, Chiari I malformation, dysmorphic features, developmental delay, hypotonia, and urinary tract defects are common findings. The consistent overlap in clinical presentation provides further evidence of the critical role of NFIA haploinsufficiency in the development of the 1p32-p31 microdeletion syndrome phenotype.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Malformación de Arnold-Chiari/genética , Discapacidades del Desarrollo/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Malformaciones del Sistema Nervioso/genética , Adolescente , Adulto , Agenesia del Cuerpo Calloso/diagnóstico , Malformación de Arnold-Chiari/diagnóstico , Niño , Deleción Cromosómica , Cromosomas Humanos Par 1 , Estudios de Cohortes , Discapacidades del Desarrollo/diagnóstico , Femenino , Haploinsuficiencia , Humanos , Mutación con Pérdida de Función , Masculino , Megalencefalia/diagnóstico , Malformaciones del Sistema Nervioso/diagnóstico , Secuenciación del Exoma
16.
Hum Genet ; 135(5): 569-586, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071622

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


Asunto(s)
Genoma Humano , Impresión Genómica , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/anomalías , Venas Pulmonares/patología , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Femenino , Factores de Transcripción Forkhead/genética , Genes Letales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Linaje , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/patología , Eliminación de Secuencia
17.
Cold Spring Harb Mol Case Stud ; 1(1): a000356, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27148565

RESUMEN

PURA is the leading candidate gene responsible for the developmental phenotype in the 5q31.3 microdeletion syndrome. De novo mutations in PURA were recently reported in 15 individuals with developmental features similar to the 5q31.3 microdeletion syndrome. Here we describe six unrelated children who were identified by clinical whole-exome sequencing (WES) to have novel de novo variants in PURA with a similar phenotype of hypotonia and developmental delay and frequently associated with seizures. The protein Purα (encoded by PURA) is involved in neuronal proliferation, dendrite maturation, and the transport of mRNA to translation sites during neuronal development. Mutations in PURA may alter normal brain development and impair neuronal function, leading to developmental delay and the seizures observed in patients with mutations in PURA.

18.
PLoS One ; 8(6): e65678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762409

RESUMEN

Metastatic breast cancer is incurable. In order to improve patient survival, it is critical to develop a better understanding of the molecular mechanisms that regulate metastasis and the underlying process of cell motility. Here, we focus on the role of the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) in cellular processes that contribute to cell motility, including protrusion, adhesion remodeling, and contractility. Previous work from our group showed that elevated BCAR3 protein levels enhance cell migration, while depletion of BCAR3 reduces the migratory and invasive capacities of breast cancer cells. In the current study, we show that BCAR3 is necessary for membrane protrusiveness, Rac1 activity, and adhesion disassembly in invasive breast cancer cells. We further demonstrate that, in the absence of BCAR3, RhoA-dependent signaling pathways appear to predominate, as evidenced by an increase in RhoA activity, ROCK-mediated phosphorylation of myosin light chain II, and large ROCK/mDia1-dependent focal adhesions. Taken together, these data establish that BCAR3 functions as a positive regulator of cytoskeletal remodeling and adhesion turnover in invasive breast cancer cells through its ability to influence the balance between Rac1 and RhoA signaling. Considering that BCAR3 protein levels are elevated in advanced breast cancer cell lines and enhance breast cancer cell motility, we propose that BCAR3 functions in the transition to advanced disease by triggering intracellular signaling events that are essential to the metastatic process.


Asunto(s)
Citoesqueleto de Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Mama/patología , Regulación Neoplásica de la Expresión Génica , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mama/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Femenino , Forminas , Factores de Intercambio de Guanina Nucleótido , Humanos , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Invasividad Neoplásica , Fosforilación , Transducción de Señal , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
19.
Int J Cancer ; 127(11): 2612-21, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20473949

RESUMEN

Nonsmall cell lung cancer (NSCLC) is the major cause of lung cancer-related deaths in the United States. We are developing cell-based vaccines as a new approach for the treatment of NSCLC. NSCLC is broadly divided into 3 histologic subtypes: adenocarcinoma, squamous cell carcinoma and large cell carcinoma. Since these subtypes are derived from the same progenitor cells, we hypothesized that they share common tumor antigens, and vaccines that induce immune reactivity against 1 subtype may also induce immunity against other subtypes. Our vaccine strategy has focused on activating tumor-specific CD4(+) T cells, a population of lymphocytes that facilitates the optimal activation of effector and memory cytotoxic CD8(+) T cells. We now report that our NSCLC MHC II vaccines prepared from adeno, squamous or large cell carcinomas each activate CD4(+) T cells that cross-react with the other NSCLC subtypes and do not react with HLA-DR-matched normal lung fibroblasts or other HLA-DR-matched nonlung tumor cells. Using MHC II NSCLC vaccines expressing the DR1, DR4, DR7 or DR15 alleles, we also demonstrate that antigens shared among the different subtypes are presented by multiple HLA-DR alleles. Therefore, MHC II NSCLC vaccines expressing a single HLA-DR allele activate NSCLC-specific CD4(+) T cells that react with the 3 major classes of NSCLC, and the antigens recognized by the activated T cells are presented by several common HLA-DR alleles, suggesting that the MHC II NSCLC vaccines are potential immunotherapeutics for a range of NSCLC patients.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Antígenos HLA-DR/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Adenocarcinoma Bronquioloalveolar/genética , Adenocarcinoma Bronquioloalveolar/inmunología , Adenocarcinoma Bronquioloalveolar/terapia , Alelos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antígeno B7-1/biosíntesis , Antígeno B7-1/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Reacciones Cruzadas , Antígenos HLA-DR/biosíntesis , Antígenos HLA-DR/genética , Humanos , Neoplasias Pulmonares/genética , Activación de Linfocitos , Células Mieloides/inmunología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA