Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 16(23): e202300492, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37493340

RESUMEN

Kraft lignin, a by-product from the production of pulp, is currently incinerated in the recovery boiler during the chemical recovery cycle, generating valuable bioenergy and recycling inorganic chemicals to the pulping process operation. Removing lignin from the black liquor or its gasification lowers the recovery boiler load enabling increased pulp production. During the past ten years, lignin separation technologies have emerged and the interest of the research community to valorize this underutilized resource has been invigorated. The aim of this Review is to give (1) a dedicated overview of the kraft process with a focus on the lignin, (2) an overview of applications that are being developed, and (3) a techno-economic and life cycle asseeements of value chains from black liquor to different products. Overall, it is anticipated that this effort will inspire further work for developing and using kraft lignin as a commodity raw material for new applications undeniably promoting pivotal global sustainability concerns.

2.
ChemSusChem ; 14(11): 2414-2425, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851793

RESUMEN

By extracting lignin, pulp production can be increased without heavy investments in a new recovery boiler, the typical bottleneck of a pulp mill. The extraction is performed by using 0.20 and 0.15 weight equivalents of CO2 and H2 SO4 respectively. Herein, we describe lignin esterification with fatty acids using benign reagents to generate a lignin ester mixable with gas oils. The esterification is accomplished by activating the fatty acid and lignin with acetic anhydride which can be regenerated from the acetic acid recycled in this reaction. The resulting mass balance ratio is fatty acid/lignin/acetic acid (2 : 1 : 0.1). This lignin ester can be hydroprocessed to generate hydrocarbons in gasoline, aviation, and diesel range. A 300-hour continuous production of fuel was accomplished. By recirculating reagents from both the esterification step and applying a water gas shift reaction on off-gases from the hydroprocessing, a favorable overall mass balance is realized.

3.
ChemSusChem ; 9(12): 1392-6, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27246391

RESUMEN

Precipitated kraft lignin from black liquor was converted into green diesel in three steps. A mild Ni-catalyzed transfer hydrogenation/hydrogenolysis using 2-propanol generated a lignin residue in which the ethers, carbonyls, and olefins were reduced. An organocatalyzed esterification of the lignin residue with an in situ prepared tall oil fatty acid anhydride gave an esterified lignin residue that was soluble in light gas oil. The esterified lignin residue was coprocessed with light gas oil in a continous hydrotreater to produce a green diesel. This approach will enable the development of new techniques to process commercial lignin in existing oil refinery infrastructures to standardized transportation fuels in the future.


Asunto(s)
Biocombustibles , Tecnología Química Verde/métodos , Lignina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...