Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 15(3): 291-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24477934

RESUMEN

The spindle assembly checkpoint inhibits anaphase until all chromosomes have become attached to the mitotic spindle. A complex between the checkpoint proteins Mad1 and Mad2 provides a platform for Mad2:Mad2 dimerization at unattached kinetochores, which enables Mad2 to delay anaphase. Here, we show that mutations in Bub1 and within the Mad1 C-terminal domain impair the kinetochore localization of Mad1:Mad2 and abrogate checkpoint activity. Artificial kinetochore recruitment of Mad1 in these mutants co-recruits Mad2; however, the checkpoint remains non-functional. We identify specific mutations within the C-terminal head of Mad1 that impair checkpoint activity without affecting the kinetochore localization of Bub1, Mad1 or Mad2. Hence, Mad1 potentially in conjunction with Bub1 has a crucial role in checkpoint signalling in addition to presenting Mad2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Mad2/genética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
2.
J Cell Sci ; 125(Pt 20): 4720-7, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22825872

RESUMEN

The spindle assembly checkpoint (SAC) blocks entry into anaphase until all chromosomes have stably attached to the mitotic spindle through their kinetochores. The checkpoint signal originates from unattached kinetochores, where there is an enrichment of SAC proteins. Whether the enrichment of all SAC proteins is crucial for SAC signaling is unclear. Here, we provide evidence that, in fission yeast, recruitment of the kinase Mph1 is of vital importance for a stable SAC arrest. An Mph1 mutant that eliminates kinetochore enrichment abolishes SAC signaling, whereas forced recruitment of this mutant to kinetochores restores SAC signaling. In bub3Δ cells, the SAC is functional when only Mph1 and the Aurora kinase Ark1, but no other SAC proteins, are enriched at kinetochores. We analyzed the network of dependencies for SAC protein localization to kinetochores and identify a three-layered hierarchy with Ark1 and Mph1 on top, Bub1 and Bub3 in the middle, and Mad3 as well as the Mad1-Mad2 complex at the lower end of the hierarchy. If Mph1 is artificially recruited to kinetochores, Ark1 becomes dispensable for SAC activity. Our results highlight the crucial role of Mph1 at kinetochores and suggest that the Mad1-Mad2 complex does not necessarily need to be enriched at kinetochores for functional SAC signaling.


Asunto(s)
Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Quinasas , Proteínas de Schizosaccharomyces pombe , Transducción de Señal , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
PLoS One ; 7(12): e52850, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23285201

RESUMEN

Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all three antifungal activities, carbohydrate starvation, nitrosative stress and oxidative stress, is essential for full wild type resistance to neutrophils.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Neutrófilos/fisiología , Estrés Oxidativo/fisiología , Fagocitosis/inmunología , Candida albicans/genética , Candidiasis/genética , Candidiasis/metabolismo , Candidiasis/patología , Células Cultivadas , Carbohidratos de la Dieta/farmacología , Espacio Extracelular/inmunología , Espacio Extracelular/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Nitrosación/fisiología , Organismos Modificados Genéticamente , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Fagocitosis/genética , Especies de Nitrógeno Reactivo/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología
4.
EMBO Rep ; 10(9): 1022-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19680287

RESUMEN

The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono-orientation to bi-orientation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático/metabolismo
5.
EMBO J ; 27(18): 2422-31, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18701921

RESUMEN

Post-translational modification by the ubiquitin-like protein SUMO is often regulated by cellular signals that restrict the modification to appropriate situations. Nevertheless, many SUMO-specific ligases do not exhibit much target specificity, and--compared with the diversity of sumoylation substrates--their number is limited. This raises the question of how SUMO conjugation is controlled in vivo. We report here an unexpected mechanism by which sumoylation of the replication clamp protein, PCNA, from budding yeast is effectively coupled to S phase. We find that loading of PCNA onto DNA is a prerequisite for sumoylation in vivo and greatly stimulates modification in vitro. To our surprise, however, DNA binding by the ligase Siz1, responsible for PCNA sumoylation, is not strictly required. Instead, the stimulatory effect of DNA on conjugation is mainly attributable to DNA binding of PCNA itself. These findings imply a change in the properties of PCNA upon loading that enhances its capacity to be sumoylated.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína SUMO-1/metabolismo , Alelos , Cromatina/metabolismo , Cisteína Endopeptidasas/química , ADN/química , Modelos Biológicos , Modelos Genéticos , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química
6.
J Mol Biol ; 376(1): 221-31, 2008 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-18155241

RESUMEN

Posttranslational modifications of proliferating cell nuclear antigen (PCNA), the eukaryotic processivity clamp for DNA polymerases, regulate the pathways by which replication problems are resolved. In the budding yeast Saccharomyces cerevisiae, ubiquitylation of PCNA in response to DNA damage facilitates the replicative bypass of lesions, whereas conjugation of the ubiquitin-related modifier (SUMO) prevents unscheduled crossover events during S phase. We have analyzed the SUMO modification pattern of budding yeast PCNA in vivo and in vitro and found that most aspects of our in vitro sumoylation reactions reflect the situation under physiological conditions. We show that two oligomeric SUMO chains of two to three moieties each, linked via internal sumoylation consensus motifs within the SUMO sequence, are assembled on PCNA. The SUMO-specific ligase Siz1 both stimulates the overall efficiency of sumoylation and selects the modification site on PCNA. Furthermore, ubiquitin and SUMO chains are assembled independently, and we found evidence that both modifiers can coexist in vivo on a common PCNA subunit. Our results demonstrate for the first time the in vivo assembly of polymeric SUMO chains of defined linkage on a physiological substrate in yeast, but they also indicate that SUMO-SUMO polymers are dispensable for PCNA(SUMO) function in replication and recombination.


Asunto(s)
Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...