Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6132, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675200

RESUMEN

Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Matriz Extracelular/química , Hidrogeles/química , Células Madre Pluripotentes/citología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Células Madre Pluripotentes/química , Células Madre Pluripotentes/metabolismo
2.
Biophys J ; 120(1): 35-45, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248128

RESUMEN

Much of what we know about the early stages of T cell activation has been obtained from studies of T cells interacting with glass-supported lipid bilayers that favor imaging but are orders of magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing "soft bilayers" with physiological levels of mechanical resistance (Young's modulus of 4 kPa). Comparisons of T cell behavior on soft and glass-supported bilayers revealed that whereas late stages of T cell activation are thought to be substrate-stiffness dependent, early calcium signaling was unaffected by substrate rigidity, implying that early steps in T cell receptor triggering are not mechanosensitive. The exclusion of large receptor-type phosphatases was observed on the soft bilayers, however, even though it is yet to be demonstrated at authentic cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.


Asunto(s)
Membrana Dobles de Lípidos , Linfocitos T , Comunicación Celular , Dimetilpolisiloxanos , Módulo de Elasticidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...