Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 223(1): 293-309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843213

RESUMEN

Genome-wide association studies (GWAS) have great promise for identifying the loci that contribute to adaptive variation, but the complex genetic architecture of many quantitative traits presents a substantial challenge. We measured 14 morphological and physiological traits and identified single nucleotide polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed from California, USA to British Columbia, Canada. We used whole-genome resequencing data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated with functional data. Broad-sense heritability (H2 ) ranged from 0.30 to 0.56 for morphological traits and 0.08 to 0.36 for physiological traits. In total, 4 and 20 gene models were detected using the single-trait and multitrait association methods, respectively. Several of these associations were corroborated by additional lines of evidence, including co-expression networks, metabolite analyses, and direct confirmation of gene function through RNAi. Multitrait association identified many more significant associations than single-trait association, potentially revealing pleiotropic effects of individual genes. This approach can be particularly useful for challenging physiological traits such as water-use efficiency or complex traits such as leaf morphology, for which we were able to identify credible candidate genes by combining multitrait association with gene co-expression and co-methylation data.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Populus/genética , Populus/fisiología , Carácter Cuantitativo Heredable , Regulación hacia Abajo , Redes Reguladoras de Genes , Genes de Plantas , Genotipo , Geografía , Patrón de Herencia/genética , Análisis Multivariante , Estomas de Plantas/fisiología , Populus/anatomía & histología , Análisis de Componente Principal
2.
Plant Cell ; 30(7): 1645-1660, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29891568

RESUMEN

Long-lived perennial plants, with distinctive habits of inter-annual growth, defense, and physiology, are of great economic and ecological importance. However, some biological mechanisms resulting from genome duplication and functional divergence of genes in these systems remain poorly studied. Here, we discovered an association between a poplar (Populus trichocarpa) 5-enolpyruvylshikimate 3-phosphate synthase gene (PtrEPSP) and lignin biosynthesis. Functional characterization of PtrEPSP revealed that this isoform possesses a helix-turn-helix motif in the N terminus and can function as a transcriptional repressor that regulates expression of genes in the phenylpropanoid pathway in addition to performing its canonical biosynthesis function in the shikimate pathway. We demonstrated that this isoform can localize in the nucleus and specifically binds to the promoter and represses the expression of a SLEEPER-like transcriptional regulator, which itself specifically binds to the promoter and represses the expression of PtrMYB021 (known as MYB46 in Arabidopsis thaliana), a master regulator of the phenylpropanoid pathway and lignin biosynthesis. Analyses of overexpression and RNAi lines targeting PtrEPSP confirmed the predicted changes in PtrMYB021 expression patterns. These results demonstrate that PtrEPSP in its regulatory form and PtrhAT form a transcriptional hierarchy regulating phenylpropanoid pathway and lignin biosynthesis in Populus.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Populus/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431741

RESUMEN

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Asunto(s)
Biocombustibles , Pared Celular/genética , Glucuronosiltransferasa/genética , Pectinas/biosíntesis , Biomasa , Boro/metabolismo , Calcio/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Productos Agrícolas , Glucuronosiltransferasa/química , Panicum/enzimología , Panicum/genética , Pectinas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Populus/enzimología , Populus/genética , Azúcares/metabolismo
4.
Biotechnol Biofuels ; 11: 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29371885

RESUMEN

BACKGROUND: The development of fast-growing hardwood trees as a source of lignocellulosic biomass for biofuel and biomaterial production requires a thorough understanding of the plant cell wall structure and function that underlie the inherent recalcitrance properties of woody biomass. Downregulation of GAUT12.1 in Populus deltoides was recently reported to result in improved biomass saccharification, plant growth, and biomass yield. To further understand GAUT12.1 function in biomass recalcitrance and plant growth, here we report the effects of P. trichocarpa GAUT12.1 overexpression in P. deltoides. RESULTS: Increasing GAUT12.1 transcript expression by 7-49% in P. deltoides PtGAUT12.1-overexpression (OE) lines resulted in a nearly complete opposite biomass saccharification and plant growth phenotype to that observed previously in PdGAUT12.1-knockdown (KD) lines. This included significantly reduced glucose, xylose, and total sugar release (12-13%), plant height (6-54%), stem diameter (8-40%), and overall total aerial biomass yield (48-61%) in 3-month-old, greenhouse-grown PtGAUT12.1-OE lines compared to controls. Total lignin content was unaffected by the gene overexpression. Importantly, selected PtGAUT12.1-OE lines retained the recalcitrance and growth phenotypes upon growth for 9 months in the greenhouse and 2.8 years in the field. PtGAUT12.1-OE plants had significantly smaller leaves with lower relative water content, and significantly reduced stem wood xylem cell numbers and size. At the cell wall level, xylose and galacturonic acid contents increased markedly in total cell walls as well as in soluble and insoluble cell wall extracts, consistent with increased amounts of xylan and homogalacturonan in the PtGAUT12.1-OE lines. This led to increased cell wall recalcitrance, as manifested by the 9-15% reduced amounts of recovered extractable wall materials and 8-15% greater amounts of final insoluble pellet in the PtGAUT12.1-OE lines compared to controls. CONCLUSIONS: The combined phenotype and chemotype data from P. deltoides PtGAUT12.1-OE and PdGAUT12.1-KD transgenics clearly establish GAUT12.1 as a recalcitrance- and growth-associated gene in poplar. Overall, the data support the hypothesis that GAUT12.1 synthesizes either an HG-containing primer for xylan synthesis or an HG glycan required for proper xylan deposition, anchoring, and/or architecture in the wall, and the possibility of HG and xylan glycans being connected to each other by a base-sensitive covalent linkage.

5.
Biotechnol Biofuels ; 8: 41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25802552

RESUMEN

BACKGROUND: The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. RESULTS: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of both xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in Populus wood as in Arabidopsis, GAUT12 affects both pectin and xylan formation. Analyses of the sugars present in sequential cell wall extracts revealed a reduction of glucuronoxylan and pectic HG and rhamnogalacturonan in extracts from PdGAUT12.1-KD lines. CONCLUSIONS: The results show that downregulation of GAUT12.1 leads to a reduction in a population of xylan and pectin during wood formation and to reduced recalcitrance, more easily extractable cell walls, and increased growth in Populus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...