Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 188
1.
BMC Genomics ; 25(1): 452, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714935

Apolipoprotein L1 (APOL1) coding variants, termed G1 and G2, are established genetic risk factors for a growing spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epigenetic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, and one CpG-APOL1 association was independent of other genomic variants. Our study highlights proximal DNA methylation alterations that may help explain the variable disease risk and clinical manifestation of APOL1 variants.


Apolipoprotein L1 , CpG Islands , DNA Methylation , Epigenesis, Genetic , Genetic Predisposition to Disease , Genotype , Quantitative Trait Loci , Apolipoprotein L1/genetics , Humans , Black or African American/genetics , Alleles , Risk Factors , Polymorphism, Single Nucleotide , Apolipoproteins/genetics , Female
2.
J Am Soc Nephrol ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38709562

BACKGROUND: APOL1 high-risk variants contribute to kidney disease among African-ancestry individuals. We sought to describe cell-specific APOL1 variants-induced pathways using two mouse models. METHODS: We characterized bacterial artificial chromosome (BAC)/APOL1 transgenic mice crossed with HIV-associated nephropathy (HIVAN) Tg26 mice and BAC/APOL1 transgenic mice given interferon-γ. RESULTS: Both mouse models showed more severe glomerular disease in APOL1-G1 compared to APOL1-G0 mice. Bulk RNA-seq of HIVAN model-glomeruli identified synergistic podocyte-damaging pathways activated by APOL1-G1 and by the HIV transgene. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Shared activated pathways, e.g. mTOR, and differentially-expressed genes, e.g. Ccn2, in podocytes in both models suggest novel markers of APOL1-associated kidney disease. HIVAN mouse-model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis glomerular RNA-seq data. Differential effects of the APOL1-G1 variant on the eukaryotic Initiation factor-2 pathway highlighted differences between the two models. CONCLUSIONS: These findings in two mouse models demonstrated both shared and distinct cell type-specific transcriptomic signatures induced by APOL1 variants. These findings suggest novel therapeutic opportunities for APOL1 glomerulopathies.

3.
J Korean Med Sci ; 39(14): e134, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622939

The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.


COVID-19 , United States , Humans , SARS-CoV-2 , COVID-19 Vaccines/therapeutic use , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antibodies, Viral , Pharmaceutical Preparations
4.
medRxiv ; 2023 Nov 20.
Article En | MEDLINE | ID: mdl-38076851

Focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome with an annual incidence in the United States in African-Americans compared to European-Americans of 24 cases and 5 cases per million, respectively. Among glomerular diseases in Europe and Latin-America, FSGS was the second most frequent diagnosis, and in Asia the fifth. We expand previous efforts in understanding genetics of FSGS by performing a case-control study involving ethnically-diverse groups FSGS cases (726) and a pool of controls (13,994), using panel sequencing of approximately 2,500 podocyte-expressed genes. Through rare variant association tests, we replicated known risk genes - KANK1, COL4A4, and APOL1. A novel significant association was observed for the gene encoding complement receptor 1 (CR1). High-risk rare variants in CR1 in the European-American cohort were commonly observed in Latin- and African-Americans. Therefore, a combined rare and common variant analysis was used to replicate the CR1 association in non-European populations. The CR1 risk variant, rs17047661, gives rise to the Sl1/Sl2 (R1601G) allele that was previously associated with protection against cerebral malaria. Pleiotropic effects of rs17047661 may explain the difference in allele frequencies across continental ancestries and suggest a possible role for genetically-driven alterations of adaptive immunity in the pathogenesis of FSGS.

5.
J Am Heart Assoc ; : e029311, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37947096

Background Pregnancy complications are risk factors for cardiovascular disease (CVD). Little is known about the role of renal biomarkers measured shortly after delivery, individually or in combination with pregnancy complications, in predicting subsequent severe maternal CVD. Methods and Results This study included 566 mothers of diverse races and ethnicities from the Boston Birth cohort, enrolled at delivery and followed prospectively. Plasma creatinine and CysC (cystatin C) were measured 1 to 3 days after delivery. CVD during follow-up was defined by physician diagnoses in electronic medical records. Associations of renal biomarkers and pregnancy complications with time-to-CVD events were assessed using Cox proportional hazards models. During an average of 10.3±3.2 years of follow-up, 30 mothers developed 1 or more CVDs. Only a modest association was observed between creatinine and risk of CVD. In comparison, we found that per 0.1 mg/L increase of CysC was associated with a hazard ratio (HR) of 1.2 (95% CI, 1.1-1.4) for CVD after adjusting for covariates. Compared with those without preeclampsia and with normal CysC level (≤75th percentile), mothers with preeclampsia and elevated CysC (>75th percentile) had the highest risk of CVD (HR, 4.6 [95% CI, 1.7-17.7]), whereas mothers with preeclampsia only or with elevated CysC only did not have significantly increased CVD risk. Similar synergistic effects for CVD were observed between CysC and preterm delivery. Conclusions In this sample of US, traditionally underrepresented multiracial and multiethnic high-risk mothers, elevated maternal plasma CysC, independently and jointly with pregnancy complications, increased risk of CVD later in life. These findings warrant further investigation. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03228875.

6.
Transplantation ; 107(12): 2575-2580, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37527489

BACKGROUND: Kidney transplant survival in African American recipients is lower compared with non-African American transplant recipients. APOL1 risk alleles (RA) have been postulated as likely contributors. We examined the graft outcomes in kidney transplant recipients (KTRs) stratified by APOL1 RA status in a multicenter observational prospective study. METHODS: The Renal Transplant Outcome Study recruited a cohort of incident KTRs at 3 transplant centers in the Philadelphia area from 1999-2004. KTRs were genotyped for APOL1 RA. Allograft and patient survival rates were compared by the presence and number of APOL1 RA. RESULTS: Among 221 participants, approximately 43% carried 2 APOL1 RA. Recipients carrying 2 APOL1 RA demonstrated lower graft survival compared with recipients with only 1 or none of APOL1 RA at 1 y posttransplant, independently of other donor and recipient characteristics (adjusted hazard ratio 3.2 [95% confidence interval, 1.0-10.4], P = 0.05). There was no significant difference in overall survival or graft survival after 3 y posttransplantation. There was no difference in death by APOL1 -risk status ( P = 0.11). CONCLUSIONS: Recipients with 2 APOL1 high-risk alleles exhibited lower graft survival 1 y posttransplantation compared with recipients with only 1 or 0 APOL1 RA. Further research is required to study the combined role of the recipient and donor APOL1 genotypes in kidney transplantation.


Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Alleles , Apolipoprotein L1/genetics , Kidney , Tissue Donors , Graft Survival/genetics
7.
Lancet Reg Health Am ; 24: 100553, 2023 Aug.
Article En | MEDLINE | ID: mdl-37600163

Background: Living kidney donation is possible for people living with HIV (PLWH) in the United States within research studies under the HIV Organ Policy Equity (HOPE) Act. There are concerns that donor nephrectomy may have an increased risk of end-stage renal disease (ESRD) in PLWH due to HIV-associated kidney disease and antiretroviral therapy (ART) nephrotoxicity. Here we report the first 3 cases of living kidney donors with HIV under the HOPE Act in the United States. Methods: Within the HOPE in Action Multicenter Consortium, we conducted a prospective study of living kidney donors with HIV. Pre-donation, we estimated the 9-year cumulative incidence of ESRD, performed genetic testing of apolipoprotein L1 (APOL1), excluding individuals with high-risk variants, and performed pre-donation kidney biopsies (HOPE Act requirement). The primary endpoint was ≥grade 3 nephrectomy-related adverse events (AEs) in year one. Post-donation, we monitored glomerular filtration rate (measured by iohexol/Tc-99m DTPA [mGFR] or estimated with serum creatinine [eGFR]), HIV RNA, CD4 count, and ART. Findings: There were three donors with two-four years of follow-up: a 35 year-old female, a 52 year-old male, and a 47 year-old male. Pre-donation 9-year estimated cumulative incidence of ESRD was 3.01, 8.01, and 7.76 per 10,000 persons, respectively. In two donors with APOL1 testing, no high-risk variants were detected. Biopsies from all three donors showed no kidney disease. Post-donation, two donors developed nephrectomy-related ≥grade 3 AEs: a medically-managed ileus and a laparoscopically-repaired incisional hernia. GFR declined from 103 to 84 mL/min/1.73 m2 at four years (mGFR) in donor 1, from 77 to 52 mL/min/1.73 m2 at three years (eGFR) in donor 2, and from 65 to 39 mL/min/1.73 m2 at two years (eGFR) in donor 3. HIV RNA remained <20 copies/mL and CD4 count remained stable in all donors. Interpretation: The first three living kidney donors with HIV under the HOPE Act in the United States have had promising outcomes at two-four years, providing proof-of-concept to support living donation from PLWH to recipients with HIV. Funding: National Institute of Allergy and Infectious Diseases, National Institutes of Health.

8.
Article En | MEDLINE | ID: mdl-37622047

Introduction: People with African ancestry have greater stroke risk and greater heritability of stroke risk than people of other ancestries. Given the importance of nitric oxide (NO) in stroke, and recent evidence that alpha globin restricts nitric oxide release from vascular endothelial cells, we hypothesized that alpha globin gene (HBA) deletion would be associated with reduced risk of incident ischemic stroke. Methods: We evaluated 8,947 participants self-reporting African ancestry in the national, prospective Reasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Incident ischemic stroke was defined as non-hemorrhagic stroke with focal neurological deficit lasting ≥ 24 hours confirmed by the medical record or focal or non-focal neurological deficit with positive imaging confirmed with medical records. Genomic DNA was analyzed using droplet digital PCR to determine HBA copy number. Multivariable Cox proportional hazards regression was used to estimate the hazard ratio (HR) of HBA copy number on time to first ischemic stroke. Results: Four-hundred seventy-nine (5.3%) participants had an incident ischemic stroke over a median (IQR) of 11.0 (5.7, 14.0) years' follow-up. HBA copy number ranged from 2 to 6: 368 (4%) -α/-α, 2,480 (28%) -α/αα, 6,014 (67%) αα/αα, 83 (1%) ααα/αα and 2 (<1%) ααα/ααα. The adjusted HR of ischemic stroke with HBA copy number was 1.04; 95%CI 0.89, 1.21; p = 0.66. Conclusions: Although a reduction in HBA copy number is expected to increase endothelial nitric oxide signaling in the human vascular endothelium, HBA copy number was not associated with incident ischemic stroke in this large cohort of Black Americans.

9.
Kidney Med ; 5(5): 100621, 2023 May.
Article En | MEDLINE | ID: mdl-37229446

Rationale & Objective: Dietary factors may impact inflammation and interferon production, which could influence phenotypic expression of Apolipoprotein1 (APOL1) genotypes. We investigated whether associations of dietary patterns with kidney outcomes differed by APOL1 genotypes. Study Design: Prospective cohort. Settings & Participants: 5,640 Black participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS). Exposures: Five dietary patterns derived from food frequency questionnaires: Convenience foods, Southern, Sweets and Fats, Plant-based, and Alcohol/Salads. Outcomes: Incident chronic kidney disease (CKD), CKD progression, and kidney failure. Incident CKD was defined as a change in estimated glomerular filtration rate (eGFR) to <60 mL/min/1.73 m2 accompanied by a ≥25% decline from baseline eGFR or development of kidney failure among those with baseline eGFR ≥60 mL/1.73 m2 body surface area. CKD progression was defined as a composite of 40% reduction in eGFR from baseline or development of kidney failure in the subset of participants who had serum creatinine levels at baseline and completed a second in-home visit/follow-up visit. Analytical Approach: We examined associations of dietary pattern quartiles with incident CKD (n=4,188), CKD progression (n=5,640), and kidney failure (n=5,640). We tested for statistical interaction between dietary patterns and APOL1 genotypes for CKD outcomes and explored stratified analyses by APOL1 genotypes. Results: Among 5,640 Black REGARDS participants, mean age was 64 years (standard deviation = 9), 35% were male, and 682 (12.1%) had high-risk APOL1 genotypes. Highest versus lowest quartiles (Q4 vs Q1) of Southern dietary pattern were associated with higher adjusted odds of CKD progression (OR, 1.28; 95% CI, 1.01-1.63) but not incident CKD (OR, 0.92; 95% CI, 0.74-1.14) or kidney failure (HR, 1.48; 95% CI, 0.90-2.44). No other dietary patterns showed significant associations with CKD. There were no statistically significant interactions between APOL1 genotypes and dietary patterns. Stratified analysis showed no consistent associations across genotypes, although Q3 and Q4 versus Q1 of Plant-based and Southern patterns were associated with lower odds of CKD progression among APOL1 high- but not low-risk genotypes. Limitations: Included overlapping dietary patterns based on a single time point and multiple testing. Conclusions: In Black REGARDS participants, Southern dietary pattern was associated with increased risk of CKD progression. Analyses stratified by APOL1 genotypes suggest associations may differ by genetic background, but these findings require confirmation in other cohorts.

10.
bioRxiv ; 2023 Mar 27.
Article En | MEDLINE | ID: mdl-37090576

APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.

11.
medRxiv ; 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36993418

Rationale & Objective: Pregnancy complications are risk factors for cardiovascular diseases (CVD). Little is known about the role of renal biomarkers measured shortly after delivery, individually or in combination with pregnancy complications, in predicting subsequent severe maternal CVD. Methods: This study included 576 mothers of diverse ethnicities from the Boston Birth cohort, enrolled at delivery and followed prospectively. Plasma creatinine and cystatin C were measured 1-3 days after delivery. CVD during follow-up was defined by physician diagnoses in electronic medical records. Associations of renal biomarkers and pregnancy complications with time-to-CVD events were assessed using Cox proportional hazards models. Results: During an average of 10.3±3.2 years of follow-up, 34 mothers developed one or more CVD events. Although no significant associations were found between creatinine and risk of CVD, per unit increase of cystatin C (CysC) was associated with a hazard ratio (HR) of 5.21 (95%CI = 1.49-18.2) for CVD. A borderline significant interactive effect was observed between elevated CysC (≥75th percentile) and preeclampsia. Compared to those without preeclampsia and with normal CysC level (<75 th percentile), mothers with preeclampsia and elevated CysC had the highest risk of CVD (HR=3.8, 95%CI = 1.4-10.2), while mothers with preeclampsia only or with elevated CysC only did not have significantly increased CVD risk. Similar synergistic effects for CVD were observed between CysC and preterm delivery. Conclusions: In this sample of US, traditionally under-represented multi-ethnic high-risk mothers, elevated maternal plasma cystatin C and pregnancy complications synergistically increased risk of CVD later in life. These findings warrant further investigation. Clinical Perspectives: What is new?Maternal postpartum elevated levels of cystatin C are independently associated with higher risk of cardiovascular diseases (CVD) later in life.Maternal pregnancy complications coupled with postpartum elevated levels of cystatin C synergistically increased future risk of CVD.What are the clinical implications?These findings, if further confirmed, suggest that women with pregnancy complications and elevated postpartum cystatin C may be at particular high risk for CVD later in life compared to women without these risk factors.

12.
medRxiv ; 2023 May 22.
Article En | MEDLINE | ID: mdl-36993674

Introduction: People with African ancestry have greater stroke risk and greater heritability of stroke risk than people of other ancestries. Given the importance of nitric oxide (NO) in stroke, and recent evidence that alpha globin restricts nitric oxide release from vascular endothelial cells, we hypothesized that alpha globin gene ( HBA) deletion would be associated with reduced risk of incident ischemic stroke. Methods: We evaluated 8,947 participants self-reporting African ancestry in the national, prospective Reasons for Geographic And Racial Differences in Stroke (REGARDS) cohort. Incident ischemic stroke was defined as non-hemorrhagic stroke with focal neurological deficit lasting ≥ 24 hours confirmed by the medical record or focal or non-focal neurological deficit with positive imaging confirmed with medical records. Genomic DNA was analyzed using droplet digital PCR to determine HBA copy number. Multivariable Cox proportional hazards regression was used to estimate the hazard ratio (HR) of HBA copy number on time to first ischemic stroke. Results: Four-hundred seventy-nine (5.3%) participants had an incident ischemic stroke over a median (IQR) of 11.0 (5.7, 14.0) years' follow-up. HBA copy number ranged from 2 to 6: 368 (4%) -α/-α, 2,480 (28%) -α/αα, 6,014 (67%) αα/αα, 83 (1%) ααα/αα and 2 (<1%) ααα/ααα. The adjusted HR of ischemic stroke with HBA copy number was 1.04; 95%CI 0.89, 1.21; p = 0.66. Conclusions: Although a reduction in HBA copy number is expected to increase endothelial nitric oxide signaling in the human vascular endothelium, HBA copy number was not associated with incident ischemic stroke in this large cohort of Black Americans.

13.
bioRxiv ; 2023 Nov 13.
Article En | MEDLINE | ID: mdl-36945458

Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.

14.
Curr Opin HIV AIDS ; 18(2): 87-92, 2023 03 01.
Article En | MEDLINE | ID: mdl-36722197

PURPOSE OF REVIEW: To highlight advances in understanding of host factors, in particular host genetics, in the development of chronic kidney disease (CKD) in people with HIV. RECENT FINDINGS: In Black populations, the G1 and G2 variants of the apolipoprotein L1 (APOL1) gene predispose to HIV-associated nephropathy (HIVAN). The risk of HIVAN is mostly confined to individuals with two APOL1 variants (kidney-risk genotypes). APOL1 kidney-risk genotypes are present in approximately 80% of patients with HIVAN and account for nearly half the burden of end-stage CKD in people of African ancestry with HIV. Progress has been made in elucidating the mechanisms of kidney injury in APOL1 nephropathy, and several targeted molecular therapies are being investigated in clinical trials. Genome- and epigenome-wide association studies are identifying additional genes and pathways that may be involved in the pathogenesis of CKD in people with HIV. SUMMARY: Genetic variants of APOL1 are strongly associated with severe CKD and contribute to the high rates of CKD in Black populations with HIV. Most individuals with APOL1 kidney-risk genotypes, however, do not develop kidney disease and further studies are required to understand the role of additional genetic and environmental factors that may affect CKD risk in this population.


Apolipoprotein L1 , HIV Infections , Renal Insufficiency, Chronic , Humans , Apolipoprotein L1/genetics , Genotype , HIV Infections/complications , HIV Infections/genetics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/genetics , Black People
15.
Kidney Int Rep ; 8(1): 164-178, 2023 Jan.
Article En | MEDLINE | ID: mdl-36644347

Introduction: The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk (HR) variants remain incompletely understood, although various molecular and cellular mechanisms have been proposed. We previously established conditionally immortalized human urine-derived podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant-induced podocytopathy. Methods: We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA), and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines) genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glomerulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte transcriptomes. Results: Differential expression analysis showed that the ribosomal pathway was one of the most enriched pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1 variant-induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype. Conclusion: We have profiled the transcriptomic landscape of human podocytes, including mRNA, miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated podocytopathies.

16.
Am J Kidney Dis ; 81(6): 635-646.e1, 2023 06.
Article En | MEDLINE | ID: mdl-36623684

RATIONALE & OBJECTIVE: Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN: Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS: 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS: Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME: Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH: Multivariate logistic regression models. RESULTS: The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS: Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS: Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms. PLAIN-LANGUAGE SUMMARY: We assessed the genetic risk factors for primary focal segmental glomerulosclerosis (FSGS) by simultaneously testing over 680,000 genetic markers spread across the genome in 140 children, including 32 with FSGS lesions. Fourteen independent genetic regions were significantly associated with pediatric FSGS, including APOL1 and ALMS1-NAT8, which were previously found to be associated with FSGS and chronic kidney diseases in adults. Novel genes with relevant biological functions were also highlighted, such as GRB2 and FGFR4, which play a role in the kidney filtration barrier and in kidney cell differentiation, respectively. Finally, we revealed the importance of immune regulation in pediatric FSGS through associations involving cell surface proteins presenting antigens to the immune system and interacting with T-cell receptors.


Glomerulosclerosis, Focal Segmental , Renal Insufficiency, Chronic , Adult , Humans , Child , Glomerulosclerosis, Focal Segmental/pathology , Apolipoprotein L1/genetics , Genome-Wide Association Study , Prospective Studies , Risk Factors , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
17.
J Virol ; 97(1): e0126122, 2023 01 31.
Article En | MEDLINE | ID: mdl-36519896

Hepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the de novo synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway. In our efforts to identify cellular DNA repair proteins required for cccDNA synthesis using a chemogenetic screen, we found that B02, a small-molecule inhibitor of DNA homologous recombination repair protein RAD51, significantly enhanced the synthesis of cccDNA via the intracellular amplification pathway in human hepatoma cells. Ironically, neither small interfering RNA (siRNA) knockdown of RAD51 expression nor treatment with another structurally distinct RAD51 inhibitor or activator altered cccDNA amplification. Instead, it was found that B02 treatment significantly elevated the levels of multiple heat shock protein mRNA, and siRNA knockdown of HSPA1 expression or treatment with HSPA1 inhibitors significantly attenuated B02 enhancement of cccDNA amplification. Moreover, B02-enhanced cccDNA amplification was efficiently inhibited by compounds that selectively inhibit DNA polymerase α or topoisomerase II, the enzymes required for cccDNA intracellular amplification. Our results thus indicate that B02 treatment induces a heat shock protein-mediated cellular response that positively regulates the conversion of rcDNA into cccDNA via the authentic intracellular amplification pathway. IMPORTANCE Elimination or functional inactivation of cccDNA minichromosomes in HBV-infected hepatocytes is essential for the cure of chronic hepatitis B virus (HBV) infection. However, lack of knowledge of the molecular mechanisms of cccDNA metabolism and regulation hampers the development of antiviral drugs to achieve this therapeutic goal. Our findings reported here imply that enhanced cccDNA amplification may occur under selected pathobiological conditions, such as cellular stress, to subvert the dilution or elimination of cccDNA and maintain the persistence of HBV infection. Therapeutic inhibition of HSPA1-enhanced cccDNA amplification under these pathobiological conditions should facilitate the elimination of cccDNA and cure of chronic hepatitis B.


DNA, Circular , HSP70 Heat-Shock Proteins , Hepatitis B virus , Humans , DNA, Circular/genetics , DNA, Viral/genetics , Hepatitis B virus/physiology , Hepatitis B, Chronic , RNA, Small Interfering/metabolism , Virus Replication/genetics , HSP70 Heat-Shock Proteins/metabolism
18.
Clin J Am Soc Nephrol ; 17(10): 1477-1486, 2022 10.
Article En | MEDLINE | ID: mdl-36400568

BACKGROUND AND OBJECTIVES: Progressive CKD in Black individuals is strongly associated with polymorphisms in the APOL1 gene, but it is unknown whether dietary risk factors for CKD progression vary in high- versus low-risk APOL1 genotypes. We investigated if APOL1 genotypes modify associations of dietary potassium and sodium with CKD progression and death. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We analyzed 1399 self-identified Black participants enrolled in the Chronic Renal Insufficiency Cohort from April 2003 to September 2008. Exposures were calibrated 24-hour urine potassium and sodium excretion. The primary outcome was CKD progression defined as the time to 50% decline in eGFR or kidney failure. The secondary outcome was CKD progression or death. We tested for an interaction between urinary potassium and sodium excretion and APOL1 genotypes. RESULTS: Median 24-hour urinary sodium and potassium excretions in Black participants were 150 mmol (interquartile range, 118-188) and 43 mmol (interquartile range, 35-54), respectively. Individuals with high- and low-risk APOL1 genotypes numbered 276 (20%) and 1104 (79%), respectively. After a median follow-up of 5.23 years, CKD progression events equaled 605, and after 7.29 years, CKD progression and death events equaled 868. There was significant interaction between APOL1 genotypes and urinary potassium excretion with CKD progression and CKD progression or death (P=0.003 and P=0.03, respectively). In those with high-risk APOL1 genotypes, higher urinary potassium excretion was associated with a lower risk of CKD progression (quartiles 2-4 versus 1: hazard ratio, 0.83; 95% confidence interval, 0.50 to 1.39; hazard ratio, 0.54; 95% confidence interval, 0.31 to 0.93; and hazard ratio, 0.50; 95% confidence interval, 0.27 to 0.93, respectively). In the low-risk APOL1 genotypes, higher urinary potassium excretion was associated with a higher risk of CKD progression (quartiles 2-4 versus 1: hazard ratio, 1.01; 95% confidence interval, 0.75 to 1.36; hazard ratio, 1.23; 95% confidence interval, 0.91 to 1.66; and hazard ratio, 1.53; 95% confidence interval, 1.12 to 2.09, respectively). We found no interaction between APOL1 genotypes and urinary sodium excretion with CKD outcomes. CONCLUSIONS: Higher urinary potassium excretion was associated with lower versus higher risk of CKD progression in APOL1 high-risk and low-risk genotypes, respectively.


Apolipoprotein L1 , Renal Insufficiency, Chronic , Humans , Apolipoprotein L1/genetics , Disease Progression , Genotype , Potassium , Renal Insufficiency, Chronic/genetics , Sodium
19.
Front Med (Lausanne) ; 9: 971297, 2022.
Article En | MEDLINE | ID: mdl-36250097

Background: Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods: Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results: Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion: In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.

20.
Front Pharmacol ; 13: 925219, 2022.
Article En | MEDLINE | ID: mdl-36081938

We reviewed all currently available ULT, as well as any medications in development using following databases: United States Food and Drug Administration (FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. We identified a total of 36 drugs, including 10 approved drugs, 17 in clinical testing phases, and 9 in preclinical developmental phases. The 26 drugs currently undergoing testing and development include 5 xanthine oxidase inhibitors, 14 uricosurics, 6 recombinant uricases, and one with multiple urate-lowering mechanisms of action. Herein, we reviewed the benefit and risk of each drug summarizing currently available drugs. New trials of uricosuric agents are underway to develop the new indication. New drugs are going on to improve the potency of recombinant uricase and to develop the new route administration of such as oral formulation. This review will provide valuable information on the properties, indications, and limitations of ULTs.

...