Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36884151

RESUMEN

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

2.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36900209

RESUMEN

Aneuploidy, a deviation in chromosome numbers from the normal diploid set, is now recognized as a fundamental characteristic of all cancer types and is found in 70-90% of all solid tumors. The majority of aneuploidies are generated by chromosomal instability (CIN). CIN/aneuploidy is an independent prognostic marker of cancer survival and is a cause of drug resistance. Hence, ongoing research has been directed towards the development of therapeutics aimed at targeting CIN/aneuploidy. However, there are relatively limited reports on the evolution of CIN/aneuploidies within or across metastatic lesions. In this work, we built on our previous studies using a human xenograft model system of metastatic disease in mice that is based on isogenic cell lines derived from the primary tumor and specific metastatic organs (brain, liver, lung, and spine). As such, these studies were aimed at exploring distinctions and commonalities between the karyotypes; biological processes that have been implicated in CIN; single-nucleotide polymorphisms (SNPs); losses, gains, and amplifications of chromosomal regions; and gene mutation variants across these cell lines. Substantial amounts of inter- and intra-heterogeneity were found across karyotypes, along with distinctions between SNP frequencies across each chromosome of each metastatic cell line relative the primary tumor cell line. There were disconnects between chromosomal gains or amplifications and protein levels of the genes in those regions. However, commonalities across all cell lines provide opportunities to select biological processes as druggable targets that could have efficacy against the primary tumor, as well as metastases.

3.
Front Microbiol ; 13: 959577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090095

RESUMEN

SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy toward them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3X (DDX3), a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented support the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.

4.
bioRxiv ; 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262079

RESUMEN

SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy towards them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3, a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented supports the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.

5.
Antiviral Res ; 185: 104994, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301755

RESUMEN

DDX3X or DDX3, a member of the DEAD (asp, glu, ala, asp) box RNA helicase family of proteins, is a multifunctional protein, which is usurped by several viruses and is vital to their production. To date, 18 species of virus from 12 genera have been demonstrated to be dependent on DDX3 for virulence. In addition, DDX3 has been shown to function within 7 of 10 subcellular regions that are involved in the metabolism of viruses. As such, due to its direct interaction with viral components across most or all stages of viral life cycles, DDX3 can be considered an excellent host target for pan-antiviral drug therapy and has been reported to be a possible broad-spectrum antiviral target. Along these lines, it has been demonstrated that treatment of virally infected cells with small molecule inhibitors of DDX3 blunts virion productions. On the other hand, DDX3 bolsters an innate immune response and viruses have evolved capacities to sequester or block DDX3, which dampens an innate immune response. Thus, enhancing DDX3 production or co-targeting direct viral products that interfere with DDX3's modulation of innate immunity would also diminish virion production. Here we review the evidence that supports the hypothesis that modulating DDX3's agonistic and antagonistic functions during viral infections could have an important impact on safely and efficiently subduing a broad-spectrum of viral infections.


Asunto(s)
Antivirales/uso terapéutico , ARN Helicasas DEAD-box/antagonistas & inhibidores , Interacciones Huésped-Patógeno/efectos de los fármacos , Virosis/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Virus/efectos de los fármacos , ARN Helicasas DEAD-box/genética , Humanos , Inmunidad Innata
6.
PLoS One ; 15(11): e0242384, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33196681

RESUMEN

BACKGROUND: Monitoring and treating metastatic progression remains a formidable task due, in part, to an inability to monitor specific differential molecular adaptations that allow the cancer to thrive within different tissue types. Hence, to develop optimal treatment strategies for metastatic disease, an important consideration is the divergence of the metastatic cancer growing in visceral organs from the primary tumor. We had previously reported the establishment of isogenic human metastatic breast cancer cell lines that are representative of the common metastatic sites observed in breast cancer patients. METHODS: Here we have used proteomic, RNAseq, and metabolomic analyses of these isogenic cell lines to systematically identify differences and commonalities in pathway networks and examine the effect on the sensitivity to breast cancer therapeutic agents. RESULTS: Proteomic analyses indicated that dissemination of cells from the primary tumor sites to visceral organs resulted in cell lines that adapted to growth at each new site by, in part, acquiring protein pathways characteristic of the organ of growth. RNAseq and metabolomics analyses further confirmed the divergences, which resulted in differential efficacies to commonly used FDA approved chemotherapeutic drugs. This model system has provided data that indicates that organ-specific growth of malignant lesions is a selective adaptation and growth process. CONCLUSIONS: The insights provided by these analyses indicate that the rationale of targeted treatment of metastatic disease may benefit from a consideration that the biology of metastases has diverged from the primary tumor biology and using primary tumor traits as the basis for treatment may not be ideal to design treatment strategies.


Asunto(s)
Neoplasias de la Mama/patología , Línea Celular Tumoral/patología , Metástasis de la Neoplasia/fisiopatología , Biomarcadores Farmacológicos/metabolismo , Femenino , Humanos , Metástasis de la Neoplasia/prevención & control , Preparaciones Farmacéuticas/metabolismo , Proteómica/métodos
7.
J Cachexia Sarcopenia Muscle ; 11(6): 1487-1500, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33006443

RESUMEN

BACKGROUND: Cachexia is a major cause of morbidity in pancreatic ductal adenocarcinoma (PDAC) patients. Our purpose was to understand the impact of PDAC-induced cachexia on brain metabolism in PDAC xenograft studies, to gain new insights into the causes of cachexia-induced morbidity. Changes in mouse and human plasma metabolites were characterized to identify underlying causes of brain metabolic changes. METHODS: We quantified metabolites, detected with high-resolution 1 H magnetic resonance spectroscopy, in the brain and plasma of normal mice (n = 10) and mice bearing cachexia (n = 10) or non-cachexia (n = 9) inducing PDAC xenografts as well as in human plasma obtained from normal individuals (n = 24) and from individuals with benign pancreatic disease (n = 20) and PDAC (n = 20). Statistical significance was defined as a P value ≤0.05. RESULTS: The brain metabolic signature of cachexia-inducing PDAC was characterized by a significant depletion of choline of -27% and -21% as well as increases of glutamine of 13% and 9% and formate of 21% and 14%, relative to normal controls and non-cachectic tumour-bearing mice, respectively. Good to moderate correlations with percent weight change were found for choline (r = 0.70), glutamine (r = -0.58), and formate (r = -0.43). Significant choline depletion of -38% and -30%, relative to normal controls and non-cachectic tumour-bearing mice, respectively, detected in the plasma of cachectic mice likely contributed to decreased brain choline in cachectic mice. Similarly, relative to normal controls and patients with benign disease, choline levels in human plasma samples of PDAC patients were significantly lower by -12% and -20% respectively. A comparison of plasma metabolites from PDAC patients with and without weight loss identified significant changes in glutamine metabolism. CONCLUSIONS: Disturbances in metabolites of the choline/cholinergic and glutamine/glutamate/glutamatergic neurotransmitter pathways may contribute to morbidity. Metabolic normalization may provide strategies to reduce morbidity. The human plasma metabolite changes observed may lead to the development of companion diagnostic markers to detect PDAC and PDAC-induced cachexia.


Asunto(s)
Encéfalo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Encéfalo/metabolismo , Caquexia/etiología , Carcinoma Ductal Pancreático/complicaciones , Colinérgicos , Humanos , Ratones , Neoplasias Pancreáticas/complicaciones
8.
Transl Oncol ; 12(1): 96-105, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30292066

RESUMEN

Medulloblastoma is the most common malignant tumor that arises from the cerebellum of the central nervous system. Clinically, medulloblastomas are treated by surgery, radiation, and chemotherapy, all of which result in toxicity and morbidity. Recent reports have identified that DDX3, a member of the RNA helicase family, is mutated in medulloblastoma. In this study, we demonstrate the role of DDX3 in driving medulloblastoma. With the use of a small molecule inhibitor of DDX3, RK-33, we could inhibit growth and promote cell death in two medulloblastoma cell lines, DAOY and UW228, with IC50 values of 2.5 µM and 3.5 µM, respectively. Treatment of DAOY and UW228 cells with RK-33 caused a G1 arrest, resulted in reduced TCF reporter activity, and reduced mRNA expression levels of downstream target genes of the WNT pathway, such as Axin2, CCND1, MYC, and Survivin. In addition, treatment of DAOY and UW228 cells with a combination of RK-33 and radiation exhibited a synergistic effect. Importantly, the combination of RK-33 and 5 Gy radiation caused tumor regression in a mouse xenograft model of medulloblastoma. Using immunohistochemistry, we observed DDX3 expression in both pediatric (55%) and adult (66%) medulloblastoma patients. Based on these results, we conclude that RK-33 is a promising radiosensitizing agent that inhibits DDX3 activity and down-regulates WNT/ß-catenin signaling and could be used as a frontline therapeutic strategy for DDX3-expressing medulloblastomas in combination with radiation.

9.
Chem Sci ; 9(3): 743-753, 2018 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-29629144

RESUMEN

Breast neoplasms frequently colonize bone and induce development of osteolytic bone lesions by disrupting the homeostasis of the bone microenvironment. This degenerative process can lead to bone pain and pathological bone fracture, a major cause of cancer morbidity and diminished quality of life, which is exacerbated by our limited ability to monitor early metastatic disease in bone and assess fracture risk. Spurred by its label-free, real-time nature and its exquisite molecular specificity, we employed spontaneous Raman spectroscopy to assess and quantify early metastasis driven biochemical alterations to bone composition. As early as two weeks after intracardiac inoculations of MDA-MB-435 breast cancer cells in NOD-SCID mice, Raman spectroscopic measurements in the femur and spine revealed consistent changes in carbonate substitution, overall mineralization as well as crystallinity increase in tumor-bearing bones when compared with their normal counterparts. Our observations reveal the possibility of early stage detection of biochemical changes in the tumor-bearing bones - significantly before morphological variations are captured through radiographic diagnosis. This study paves the way for a better molecular understanding of altered bone remodeling in such metastatic niches, and for further clinical studies with the goal of establishing a non-invasive tool for early metastasis detection and prediction of pathological fracture risk in breast cancer.

10.
Anticancer Res ; 37(5): 2195-2200, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28476782

RESUMEN

BACKGROUND: Chemotherapy is an effective option to treat recurrent or metastatic cancer but its debilitating side-effects limit the dose and time of exposure. Prodrugs that can be activated locally by an activating enzyme can minimize collateral damage from chemotherapy. We previously demonstrated the efficacy of a poly-L-lysine-based theranostic nanoplex containing bacterial cytosine deaminase (bCD) that locally converted 5-fluorocytosine (5-FC) to the chemotherapeutic agent 5-fluorouracil in MDA-MB-231 primary tumor xenografts. MATERIALS AND METHODS: Here we used a more effective variant of bCD to target metastatic red fluorescence protein expressing MDA-MB-435 cells in the lungs. We used an intravenous injection of tumor cells and monitored tumor growth in the lungs for 5 weeks by which time metastatic nodules were detected with optical imaging. The animals were then treated with the bCD-nanoplex and 5-FC. RESULTS: We observed a significant decrease in metastatic burden with a single dose of the enzyme-nanoplex and two consecutive prodrug injections. CONCLUSION: These results are a first step towards the longitudinal evaluation of such a strategy with multiple doses. Additionally, the enzyme can be directly coupled to imaging reporters to time prodrug administration for the detection and treatment of aggressive metastatic cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Citosina Desaminasa/administración & dosificación , Proteínas de Escherichia coli/administración & dosificación , Fluorouracilo/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Profármacos/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Citosina Desaminasa/química , Citosina Desaminasa/uso terapéutico , Progresión de la Enfermedad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/uso terapéutico , Femenino , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Humanos , Neoplasias Pulmonares/patología , Ratones SCID , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Polietileneimina/administración & dosificación , Polietileneimina/química , Polietileneimina/uso terapéutico , Polilisina/administración & dosificación , Polilisina/química , Polilisina/uso terapéutico , Profármacos/química , Profármacos/uso terapéutico
11.
Oncotarget ; 8(12): 20266-20287, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28145887

RESUMEN

Molecular characterization of organ-specific metastatic lesions, which distinguish them from the primary tumor, will provide a better understanding of tissue specific adaptations that regulate metastatic progression. Using an orthotopic xenograft model, we have isolated isogenic metastatic human breast cancer cell lines directly from organ explants that are phenotypically distinct from the primary tumor cell line. Label-free Raman spectroscopy was used and informative spectral bands were ascertained as differentiators of organ-specific metastases as opposed to the presence of a single universal marker. Decision algorithms derived from the Raman spectra unambiguously identified these isogenic cell lines as unique biological entities - a finding reinforced through metabolomic analyses that indicated tissue of origin metabolite distinctions between the cell lines. Notably, complementarity of the metabolomics and Raman datasets was found. Our findings provide evidence that metastatic spread generates tissue-specific adaptations at the molecular level within cancer cells, which can be differentiated with Raman spectroscopy.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Metaboloma , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia/patología , Espectrometría Raman
12.
Oncotarget ; 8(70): 115280-115289, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383159

RESUMEN

When crypt stem cells of the gastrointestinal tract become injured, the result is increased synthesis of pro-inflammatory cytokines and matrix metalloproteinases by their progeny - the colonic epithelium. Chronic inflammation of the gastrointestinal tract is a characteristic of inflammatory bowel disease, which includes Crohn's Disease and Ulcerative Colitis. In our ongoing investigation to decipher the characteristic functions of a RNA helicase gene, DDX3, we identified high DDX3 expression by immunohistochemistry of colon biopsy samples, which included chronic/mild Morbus Crohn, active Morbus Crohn, Chronic/mild Colitis Ulcerosa and active Colitis Ulcerosa in epithelium and stromal compartments. We used a small molecule inhibitor of DDX3, RK-33, on two human colonic epithelial cell lines, HCEC1CT and HCEC2CT and found that RK-33 was able to decrease expression of MMP-1, MMP-2, MMP-3, and MMP-10. Moreover, forced differentiation of a human colonic cancer cell line, HT29, resulted in decreased DDX3 levels, indicating that DDX3 contributes to the modulation of colonic epithelium differentiation. In conclusion, our results revealed novel functions of DDX3 in inflammatory bowel disease and indicate a potential for using RK-33 as a systemic therapy to promote not only differentiation of transformed colonic epithelium but also to reduce MMP expression and thus elicit a decreased inflammatory response.

13.
Cancer Res ; 76(6): 1441-50, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26719527

RESUMEN

The dire effects of cancer-induced cachexia undermine treatment and contribute to decreased survival rates. Therapeutic options for this syndrome are limited, and therefore efforts to identify signs of precachexia in cancer patients are necessary for early intervention. The applications of molecular and functional imaging that would enable a whole-body "holistic" approach to this problem may lead to new insights and advances for diagnosis and treatment of this syndrome. Here we have developed a myoblast optical reporter system with the purpose of identifying early cachectic events. We generated a myoblast cell line expressing a dual tdTomato:GFP construct that was grafted onto the muscle of mice-bearing human pancreatic cancer xenografts to provide noninvasive live imaging of events associated with cancer-induced cachexia (i.e., weight loss). Real-time optical imaging detected a strong tdTomato fluorescent signal from skeletal muscle grafts in mice with weight losses of only 1.2% to 2.7% and tumor burdens of only approximately 79 to 170 mm(3). Weight loss in cachectic animals was also associated with a depletion of lipid, cholesterol, valine, and alanine levels, which may provide informative biomarkers of cachexia. Taken together, our findings demonstrate the utility of a reporter system that is capable of tracking tumor-induced weight loss, an early marker of cachexia. Future studies incorporating resected tissue from human pancreatic ductal adenocarcinoma into a reporter-carrying mouse may be able to provide a risk assessment of cachexia, with possible implications for therapeutic development.


Asunto(s)
Caquexia/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Mioblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Secuencia de Bases , Carcinoma Ductal Pancreático/patología , Línea Celular , Línea Celular Tumoral , Fluorescencia , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/patología , Ratas , Transducción de Señal/fisiología , Carga Tumoral/fisiología
14.
Oncotarget ; 6(30): 29901-13, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26337079

RESUMEN

DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer properties of NZ51 in MCF-7 and MDA-MB-231 breast cancer cell lines. NZ51 treatment decreased cellular motility and cell viability of MCF-7 and MDA-MB-231 cells with IC50 values in the low micromolar range. Biological knockdown of DDX3 in MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates and reduced clonogenicity. In addition, NZ51 was effective in killing breast cancer cells under hypoxic conditions with the same potency as observed during normoxia. Mechanistic studies indicated that NZ51 did not cause DDX3 degradation, but greatly diminished its functionality. Moreover, in vivo experiments demonstrated that DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis without altering tumor vascular volume or permeability-surface area. In initial in vivo experiments, NZ51 treatment did not significantly reduce tumor volume. Further studies are needed to optimize drug formulation, dose and delivery. Continuing work will determine the in vitro-in vivo correlation of NZ51 activity and its utility in a clinical setting.


Asunto(s)
Azepinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , ARN Helicasas DEAD-box/antagonistas & inhibidores , Nucleósidos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Azepinas/química , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Immunoblotting , Células MCF-7 , Ratones Desnudos , Estructura Molecular , Nucleósidos/química , Interferencia de ARN , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Anal Biochem ; 450: 1-3, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24393695

RESUMEN

Direct efficient facile screening of bacterial transformants with the goal of selecting, retrieving, and using recombinant DNA is exemplified by simple visual-based colorimetric inspections or fluorescent protein-based assays. We describe pRedScript, which introduces the constitutive expression of a very bright red fluorescent protein into transformants. On agar plates, red colonies are simply visualized in ambient white light in stark contrast to recombinant transformants that are white. In addition, the bright red fluorescence of the reporter protein can also be harnessed as a sensitive signal for screening bacterial promoters during the development of optimized fermentation conditions.


Asunto(s)
ADN Recombinante/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Transformación Genética , Secuencia de Bases , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Proteína Fluorescente Roja
16.
NMR Biomed ; 26(3): 285-98, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22945331

RESUMEN

Applications of molecular imaging in cancer and other diseases frequently require the combination of in vivo imaging modalities, such as MR and optical imaging, with ex vivo optical, fluorescence, histology and immunohistochemical imaging to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo MRI and MRSI, ex vivo brightfield and fluorescence microscopic imaging and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required the generation of a three-dimensional reconstruction module for two-dimensional ex vivo optical and histology imaging data. We developed an external fiducial marker-based three-dimensional reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. The registration of the three-dimensional tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence and histology imaging datasets obtained from human breast tumor models. Three-dimensional human breast tumor datasets were successfully reconstructed and fused with this platform.


Asunto(s)
Biomarcadores de Tumor/análisis , Biopsia/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Microscopía Fluorescente/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Desnudos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
17.
J Am Soc Mass Spectrom ; 24(5): 711-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23184411

RESUMEN

Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Proteínas Luminiscentes/química , Imagen Molecular/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Trasplante Heterólogo , Tripsina/química , Proteína Fluorescente Roja
18.
Neoplasia ; 14(8): 732-41, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22952426

RESUMEN

Tumor hypoxia triggers signaling cascades that significantly affect biologic outcomes such as resistance to radiotherapy and chemotherapy in breast cancer. Hypoxic regions in solid tumor are spatially heterogeneous. Therefore, delineating the origin and extent of hypoxia in tumors is critical. In this study, we have investigated the effect of hypoxia on different metabolic pathways, such as lipid and choline metabolism, in a human breast cancer model. Human MDA-MB-231 breast cancer cells and tumors, which were genetically engineered to express red fluorescent tdTomato protein under hypoxic conditions, were used to investigate hypoxia. Our data were obtained with a novel three-dimensional multimodal molecular imaging platform that combines magnetic resonance (MR) imaging, MR spectroscopic imaging (MRSI), and optical imaging of hypoxia and necrosis. A higher concentration of noninvasively detected total choline-containing metabolites (tCho) and lipid CH3 localized in the tdTomato-fluorescing hypoxic regions indicated that hypoxia can upregulate tCho and lipid CH3 levels in this breast tumor model. The increase in tCho under hypoxia was primarily due to elevated phosphocholine levels as shown by in vitro MR spectroscopy. Elevated lipid CH3 levels detected under hypoxia were caused by an increase in mobile MR-detectable lipid droplets, as demonstrated by Nile Red staining. Our findings demonstrate that noninvasive MRSI can help delineate hypoxic regions in solid tumors by means of detecting the metabolic outcome of tumor hypoxia, which is characterized by elevated tCho and lipid CH3.


Asunto(s)
Neoplasias de la Mama/metabolismo , Colina/metabolismo , Metabolismo de los Lípidos , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Imagen Óptica , Transducción de Señal
19.
ACS Nano ; 6(9): 7752-7762, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22866897

RESUMEN

Theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease that is as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive "fingerprint" of each tumor. With such information, theranostic agents can be designed to personalize treatment and minimize damage to normal tissue. Here we have developed a nanoplex platform for theranostic imaging of prostate cancer (PCa). In these proof-of-principle studies, a therapeutic nanoplex containing multimodal imaging reporters was targeted to prostate-specific membrane antigen (PSMA), which is expressed on the cell surface of castrate-resistant PCa. The nanoplex was designed to deliver small interfering RNA (siRNA) along with a prodrug enzyme to PSMA-expressing tumors. Each component of the nanoplex was carefully selected to evaluate its diagnostic aspect of PSMA imaging and its therapeutic aspects of siRNA-mediated down-regulation of a target gene and the conversion of a prodrug to cytotoxic drug, using noninvasive multimodality imaging. Studies performed using two variants of human PC3-PCa cells and tumors, one with high PSMA expression level and another with negligible expression levels, demonstrated PSMA-specific uptake. In addition, down-regulation of the selected siRNA target, choline kinase (Chk), and the conversion of the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU) were also demonstrated with noninvasive imaging. The nanoplex was well-tolerated and did not induce liver or kidney toxicity or a significant immune response. The nanoplex platform described can be easily modified and applied to different cancers, receptors, and pathways to achieve theranostic imaging, as a single agent or in combination with other treatment modalities.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/uso terapéutico , Antígeno Prostático Específico/química , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Nanopartículas/química , Especificidad de Órganos , Neoplasias de la Próstata/metabolismo , Distribución Tisular , Resultado del Tratamiento
20.
Drug Deliv Transl Res ; 2(1): 22-30, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23646292

RESUMEN

Many cytotoxic therapies are available to kill cancer cells. Unfortunately, these also inflict significant damage on normal cells. Identifying highly effective cancer treatments that have minimal or no side effects continues to be a major challenge. One of the strategies to minimize damage to normal tissue is to deliver an activating enzyme that localizes only in the tumor and converts a nontoxic prodrug to a cytotoxic agent locally in the tumor. Such strategies have been previously tested but with limited success due in large part to the uncertainty in the delivery and distribution of the enzyme. Imaging the delivery of the enzyme to optimize timing of the prodrug administration to achieve image-guided prodrug therapy would be of immense benefit for this strategy. Here, we have reviewed advances in the incorporation of image guidance in the applications of prodrug enzymes in cancer treatment. These advances demonstrate the feasibility of using clinically translatable imaging in these prodrug enzyme strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA