Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Environ Toxicol Chem ; 43(3): 513-525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37067359

RESUMEN

The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecotoxicología , Mamíferos , Animales , Humanos , Medición de Riesgo/métodos , Ecotoxicología/métodos , Preparaciones Farmacéuticas
2.
Environ Int ; 180: 108227, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37826893

RESUMEN

Zinc (Zn) is an essential metal present in numerous enzymes throughout the body, playing a vital role in animal and human health. However, the increasing use of zinc oxide nanomaterials (ZnONPs) in a diverse range of products has raised concerns regarding their potential impacts on health and the environment. Despite these concerns, the toxicity of ZnONP exposure on animal health remain poorly understood. To help address this knowledge gap, we have developed a highly sensitive oxidative stress (OS) biosensor zebrafish capable of detecting cell/tissue-specific OS responses to low doses of various oxidative stressors, including Zn, in a live fish embryo. Using live-imaging analysis with this biosensor zebrafish embryo, we discovered that the olfactory sensory neurons in the brain are especially sensitive to ZnOP exposure. Furthermore, through studies monitoring neutrophil migration and neuronal activation in the embryonic brain and via behaviour analysis, we have found that sub-lethal doses of ZnONPs (ranging from 0.033 to 1 mg/L nominal concentrations), which had no visible effect on embryo growth or morphology, cause significant localised inflammation, disrupting the neurophysiology of olfactory brain tissues and ultimately impaired olfaction-mediated behaviour. Collectively, these findings establish a potent and important effect mechanism for ZnONP toxicity, indicating the olfactory sensory system as the primary target for ZnONPs as an environmental toxicant in aquatic environments. Our result also highlights that even low doses of ZnONPs can have detrimental effects on the olfactory sensory system, surpassing previous expectations. The importance of olfaction in environment sensing, sex behaviours and overall fitness across species raises concerns about the potential impact of ZnONPs on olfaction-mediated brain function and behaviour in animals and humans. Our study emphasises the need for greater consideration of the potential risks associated with these nanomaterials.


Asunto(s)
Nanopartículas , Óxido de Zinc , Animales , Humanos , Óxido de Zinc/toxicidad , Pez Cebra , Olfato , Zinc/toxicidad , Órganos de los Sentidos
3.
Ecotoxicol Environ Saf ; 260: 115019, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269610

RESUMEN

Gold nanoparticles (AuNPs) are widely used in biomedicine and their specific properties including, size, geometrics, and surface coating, will affect their fate and behaviour in biological systems. These properties are well studied for their intended biological targets, but there is a lack of understanding on the mechanisms by which AuNPs interact in non-target organisms when they enter the environment. We investigated the effects of size and surface chemistry of AuNPs on their bioavailability, tissue distribution and potential toxicity using zebrafish (Danio rerio) as an experimental model. Larval zebrafish were exposed to fluorescently tagged AuNPs of different sizes (10-100 nm) and surface modifications (TNFα, NHS/PAMAM and PEG), and uptake, tissue distribution and depuration rates were measured using selective-plane illumination microscopy (SPIM). The gut and pronephric tubules were found to contain detectable levels of AuNPs, and the concentration-dependent accumulation was related to the particle size. Surface addition of PEG and TNFα appeared to enhance particle accumulation in the pronephric tubules compared to uncoated particles. Depuration studies showed a gradual removal of particles from the gut and pronephric tubules, although fluorescence indicating the presence of the AuNPs remained in the pronephros 96 h after exposure. Toxicity assessment using two transgenic zebrafish reporter lines, however, revealed no AuNP-related renal injury or cellular oxidative stress. Collectively, our data show that AuNPs used in medical applications across the size range 40-80 nm, are bioavailable to larval zebrafish and some may persist in renal tissue, although their presence did not result in measurable toxicity with respect to pronephric organ function or cellular oxidative stress for short term exposures.


Asunto(s)
Nanopartículas del Metal , Pez Cebra , Animales , Oro/química , Nanopartículas del Metal/toxicidad , Factor de Necrosis Tumoral alfa , Distribución Tisular , Disponibilidad Biológica , Tamaño de la Partícula
4.
Front Pharmacol ; 13: 827686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548346

RESUMEN

The clinical heterogeneity of heart failure has challenged our understanding of the underlying genetic mechanisms of this disease. In this respect, large-scale patient DNA sequencing studies have become an invaluable strategy for identifying potential genetic contributing factors. The complex aetiology of heart failure, however, also means that in vivo models are vital to understand the links between genetic perturbations and functional impacts as part of the process for validating potential new drug targets. Traditional approaches (e.g., genetically-modified mice) are optimal for assessing small numbers of genes, but less practical when multiple genes are identified. The zebrafish, in contrast, offers great potential for higher throughput in vivo gene functional assessment to aid target prioritisation, by providing more confidence in target relevance and facilitating gene selection for definitive loss of function studies undertaken in mice. Here we used whole-exome sequencing and bioinformatics on human patient data to identify 3 genes (API5, HSPB7, and LMO2) suggestively associated with heart failure that were also predicted to play a broader role in disease aetiology. The role of these genes in cardiovascular system development and function was then further investigated using in vivo CRISPR/Cas9-mediated gene mutation analysis in zebrafish. We observed multiple impacts in F0 knockout zebrafish embryos (crispants) following effective somatic mutation, including changes in ventricle size, pericardial oedema, and chamber malformation. In the case of lmo2, there was also a significant impact on cardiovascular function as well as an expected reduction in erythropoiesis. The data generated from both the human in silico and zebrafish in vivo assessments undertaken supports further investigation of the potential roles of API5, HSPB7, and LMO2 in human cardiovascular disease. The data presented also supports the use of human in silico genetic variant analysis, in combination with zebrafish crispant phenotyping, as a powerful approach for assessing gene function as part of an integrated multi-level drug target validation strategy.

5.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228313

RESUMEN

We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Encéfalo , Larva/fisiología , Mamíferos , Convulsiones
6.
Environ Int ; 162: 107163, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35240385

RESUMEN

The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.


Asunto(s)
Drogas Veterinarias , Contaminantes Químicos del Agua , Animales , Peces , Glucocorticoides/análisis , Glucocorticoides/toxicidad , Mamíferos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023540

RESUMEN

Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.


Asunto(s)
Estrógenos/metabolismo , Neurogénesis , Neuroglía/citología , Bulbo Olfatorio/embriología , Animales , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Sinapsis/metabolismo , Sinapsis/fisiología , Pez Cebra
8.
Environ Sci Technol ; 55(24): 16299-16312, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34856105

RESUMEN

Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Antidepresivos/toxicidad , Peces , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Br J Pharmacol ; 178(13): 2671-2689, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768524

RESUMEN

BACKGROUND AND PURPOSE: Functional brain imaging using genetically encoded Ca2+ sensors in larval zebrafish is being developed for studying seizures and epilepsy as a more ethical alternative to rodent models. Despite this, few data have been generated on pharmacological mechanisms of action other than GABAA antagonism. Assessing larval responsiveness across multiple mechanisms is vital to test the translational power of this approach, as well as assessing its validity for detecting unwanted drug-induced seizures and testing antiepileptic drug efficacy. EXPERIMENTAL APPROACH: Using light-sheet imaging, we systematically analysed the responsiveness of 4 days post fertilisation (dpf; which are not considered protected under European animal experiment legislation) transgenic larval zebrafish to treatment with 57 compounds spanning more than 12 drug classes with a link to seizure generation in mammals, alongside eight compounds with no such link. KEY RESULTS: We show 4dpf zebrafish are responsive to a wide range of mechanisms implicated in seizure generation, with cerebellar circuitry activated regardless of the initiating pharmacology. Analysis of functional connectivity revealed compounds targeting cholinergic and monoaminergic reuptake, in particular, showed phenotypic consistency broadly mapping onto what is known about neurotransmitter-specific circuitry in the larval zebrafish brain. Many seizure-associated compounds also exhibited altered whole brain functional connectivity compared with controls. CONCLUSIONS AND IMPLICATIONS: This work represents a significant step forward in understanding the translational power of 4dpf larval zebrafish for use in neuropharmacological studies and for studying the events driving transition from small-scale pharmacological activation of local circuits, to the large network-wide abnormal synchronous activity associated with seizures.


Asunto(s)
Encéfalo , Pez Cebra , Animales , Encéfalo/diagnóstico por imagen , Neuroimagen Funcional , Larva , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
10.
Acta Physiol (Oxf) ; 230(4): e13543, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32743878

RESUMEN

AIM: Aggression is a behavioural trait characterized by the intention to harm others for offensive or defensive purposes. Neurotransmitters such as serotonin and dopamine are important mediators of aggression. However, the physiological role of the histaminergic system during this behaviour is currently unclear. Here, we aimed to better understand histaminergic signalling during aggression by characterizing the involvement of the histamine H3 receptor (Hrh3). METHODS: We have generated a novel zebrafish Hrh3 null mutant line using CRISPR-Cas9 genome engineering and investigated behavioural changes and alterations to neural activity using whole brain Ca2+ imaging in zebrafish larvae and ribosomal protein S6 (rpS6) immunohistochemistry in adults. RESULTS: We show that genetic inactivation of the histamine H3 receptor (Hrh3) reduces aggression in zebrafish, an effect that can be reproduced by pharmacological inhibition. In addition, hrh3-/- zebrafish show behavioural impairments consistent with heightened anxiety. Larval in vivo whole brain Ca2+ imaging reveals higher neuronal activity in the forebrain of mutants, but lower activity in specific hindbrain areas and changes in measures of functional connectivity between subregions. Adult hrh3-/- zebrafish display brain region-specific neural activity changes in response to aggression of both key regions of the social decision-making network, and the areas containing histaminergic neurons in the zebrafish brain. CONCLUSION: These results highlight the importance of zebrafish Hrh3 signalling for aggression and anxiety and uncover the brain areas involved. Targeting this receptor might be a potential novel therapeutic route for human conditions characterized by heightened aggression.


Asunto(s)
Receptores Histamínicos H3 , Agresión , Animales , Encéfalo/metabolismo , Histamina , Humanos , Prosencéfalo/metabolismo , Receptores Histamínicos H3/metabolismo , Serotonina , Pez Cebra/metabolismo
11.
Eur Neuropsychopharmacol ; 30: 17-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31679888

RESUMEN

Although aggression is a common symptom of psychiatric disorders the drugs available to treat it are non-specific and can have unwanted side effects. In this study we have used a behavioural platform in a phenotypic screen to identify drugs that can reduce zebrafish aggression without affecting locomotion. In a three tier screen of ninety-four drugs we discovered that caffeine and sildenafil can selectively reduce aggression. Caffeine also decreased attention and increased impulsivity in the 5-choice serial reaction time task whereas sildenafil showed the opposite effect. Imaging studies revealed that both caffeine and sildenafil are active in the zebrafish brain, with prominent activation of the thalamus and cerebellum evident. They also interact with 5-HT neurotransmitter signalling. In summary, we have demonstrated that juvenile zebrafish are a suitable model to screen for novel drugs to reduce aggression, with the potential to uncover the neural circuits and signalling pathways that mediate such behavioural effects.


Asunto(s)
Agresión/efectos de los fármacos , Agresión/psicología , Cafeína/farmacología , Tiempo de Reacción/efectos de los fármacos , Citrato de Sildenafil/farmacología , Factores de Edad , Agresión/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Tiempo de Reacción/fisiología , Vasodilatadores/farmacología , Pez Cebra
12.
Environ Toxicol Pharmacol ; 74: 103301, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31794920

RESUMEN

The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MKE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MKE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.


Asunto(s)
Rutas de Resultados Adversos , Monitoreo del Ambiente , Peces/fisiología , Animales , Ciudades , Ecosistema , Países Bajos , Contaminantes Químicos del Agua
13.
Environ Int ; 133(Pt A): 105138, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645010

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) arise as a result from, and are essential in, numerous cellular processes. ROS, however, are highly reactive and if left unneutralised by endogenous antioxidant systems, can result in extensive cellular damage and/or pathogenesis. In addition, exposure to a wide range of environmental stressors can also result in surplus ROS production leading to oxidative stress (OS) and downstream tissue toxicity. OBJECTIVES: Our aim was to produce a stable transgenic zebrafish line, unrestricted by tissue-specific gene regulation, which was capable of providing a whole organismal, real-time read-out of tissue-specific OS following exposure to a wide range of OS-inducing environmental contaminants and conditions. This model could, therefore, serve as a sensitive and specific mechanistic in vivo biomarker for all environmental conditions that result in OS. METHODS: To achieve this aim, we exploited the pivotal role of the electrophile response element (EpRE) as a globally-acting master regulator of the cellular response to OS. To test tissue specificity and quantitative capacity, we selected a range of chemical contaminants known to induce OS in specific organs or tissues, and assessed dose-responsiveness in each using microscopic measures of mCherry fluorescence intensity. RESULTS: We produced the first stable transgenic zebrafish line Tg (3EpRE:hsp70:mCherry) with high sensitivity for the detection of cellular RedOx imbalances, in vivo in near-real time. We applied this new model to quantify OS after exposure to a range of environmental conditions with high resolution and provided quantification both of compound- and tissue-specific ROS-induced toxicity. DISCUSSION: Our model has an extremely diverse range of potential applications not only for biomonitoring of toxicants in aqueous environments, but also in biomedicine for identifying ROS-mediated mechanisms involved in the progression of a number of important human diseases, including cancer.


Asunto(s)
Elementos de Respuesta Antioxidante/fisiología , Técnicas Biosensibles , Estrés Oxidativo/fisiología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Elementos de Respuesta Antioxidante/genética , Antioxidantes , Biomarcadores , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/química , Pez Cebra/genética
14.
Front Pharmacol ; 10: 893, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474857

RESUMEN

The zebrafish is rapidly emerging as a promising alternative in vivo model for the detection of drug-induced cardiovascular effects. Despite its increasing popularity, the ability of this model to inform the drug development process is often limited by the uncertainties around the quantitative relevance of zebrafish responses compared with nonclinical mammalian species and ultimately humans. In this test of concept study, we provide a comparative quantitative analysis of the in vivo cardiovascular responses of zebrafish, rat, dog, and human to three model compounds (propranolol, losartan, and captopril), which act as modulators of two key systems (beta-adrenergic and renin-angiotensin systems) involved in the regulation of cardiovascular functions. We used in vivo imaging techniques to generate novel experimental data of drug-mediated cardiovascular effects in zebrafish larvae. These data were combined with a database of interspecies mammalian responses (i.e., heart rate, blood flow, vessel diameter, and stroke volume) extracted from the literature to perform a meta-analysis of effect size and direction across multiple species. In spite of the high heterogeneity of study design parameters, our analysis highlighted that zebrafish and human responses were largely comparable in >80% of drug/endpoint combinations. However, it also revealed a high intraspecies variability, which, in some cases, prevented a conclusive interpretation of the drug-induced effect. Despite the shortcomings of our study, the meta-analysis approach, combined with a suitable data visualization strategy, enabled us to observe patterns of response that would likely remain undetected with more traditional methods of qualitative comparative analysis. We propose that expanding this approach to larger datasets encompassing multiple drugs and modes of action would enable a rigorous and systematic assessment of the applicability domain of the zebrafish from both a mechanistic and phenotypic standpoint. This will increase the confidence in its application for the early detection of adverse drug reactions in any major organ system.

15.
Environ Sci Technol ; 53(1): 463-474, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520632

RESUMEN

The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA's reactive metabolite MBP and the development of valvular-cardiovascular disease states.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Niño , Estrógenos , Humanos , Fenoles
16.
Sci Rep ; 8(1): 15903, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30349014

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

17.
Environ Sci Technol ; 52(11): 6656-6665, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29738667

RESUMEN

Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 µg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Estrógenos , Humanos , Fenoles
18.
Sci Rep ; 7(1): 6581, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747660

RESUMEN

Functional neuroimaging, using genetically-encoded Ca2+ sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Convulsivantes/administración & dosificación , Neuroimagen Funcional/métodos , Animales , Análisis Espacio-Temporal , Pez Cebra
19.
Toxicol In Vitro ; 41: 114-122, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28259787

RESUMEN

In mammals, the pregnane X receptor (PXR) is a transcription factor with a key role in regulating expression of several genes involved in drug biotransformation. PXR is present in fish and some genes known to be under its control can be up-regulated by mammalian PXR ligands. Despite this, direct involvement of PXR in drug biotransformation in fish has yet to be established. Here, the full length PXR sequence was cloned from carp (Cyprinus carpio) and used in a luciferase reporter assay to elucidate its role in xenobiotic metabolism in fish. A reporter assay for human PXR (hPXR) was also established to compare transactivation between human and carp (cPXR) isoforms. Rifampicin activated hPXR as expected, but not cPXR. Conversely, clotrimazole (CTZ) activated both isoforms and was more potent on cPXR, with an EC50 within the range of concentrations of CTZ measured in the aquatic environment. Responses to other azoles tested were similar between both isoforms. A range of pharmaceuticals tested either failed to activate, or were very weakly active, on the cPXR or hPXR. Overall, these results indicate that the cPXR may differ from the hPXR in its responses and/or sensitivity to induction by different environmental chemicals, with implications for risk assessment because of species differences.


Asunto(s)
Bioensayo , Proteínas de Peces/genética , Receptores de Esteroides/genética , Secuencia de Aminoácidos , Animales , Azoles/toxicidad , Células COS , Carpas/genética , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Proteínas de Peces/agonistas , Fungicidas Industriales/toxicidad , Genes Reporteros , Humanos , Luciferasas/genética , Receptor X de Pregnano , Receptores de Esteroides/agonistas , Medición de Riesgo , Activación Transcripcional/efectos de los fármacos
20.
Environ Toxicol Chem ; 35(11): 2782-2790, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27061599

RESUMEN

Psychoactive drugs are frequently detected in the aquatic environment. The evolutionary conservation of the molecular targets of these drugs in fish suggests that they may elicit mode of action-mediated effects in fish as they do in humans, and the key open question is at what exposure concentrations these effects might occur. In the present study, the authors investigated the uptake and tissue distribution of the benzodiazepine oxazepam in the fathead minnow (Pimephales promelas) after 28 d of waterborne exposure to 0.8 µg L-1 , 4.7 µg L-1 , and 30.6 µg L-1 . Successively, they explored the relationship between the internal concentrations of oxazepam and the effects on fish exploratory behavior quantified by performing 2 types of behavioral tests, the novel tank diving test and the shelter-seeking test. The highest internal concentrations of oxazepam were found in brain, followed by plasma and liver, whereas muscle presented the lowest values. Average concentrations measured in the plasma of fish from the 3 exposure groups were, respectively, 8.7 ± 5.7 µg L-1 , 30.3 ± 16.1 µg L-1 , and 98.8 ± 72.9 µg L-1 . Significant correlations between plasma and tissue concentrations of oxazepam were found in all 3 groups. Exposure of fish to 30.6 µg L-1 in water produced plasma concentrations within or just below the human therapeutic plasma concentration (HT PC) range in many individuals. Statistically significant behavioral effects in the novel tank diving test were observed in fish exposed to 4.7 µg L-1 . In this group, plasma concentrations of oxazepam were approximately one-third of the lowest HT PC value. No significant effects were observed in fish exposed to the lowest and highest concentrations. The significance of these results is discussed in the context of the species-specific behavior of fathead minnow and existing knowledge of oxazepam pharmacology. Environ Toxicol Chem 2016;35:2782-2790. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Ansiolíticos/toxicidad , Conducta Animal/efectos de los fármacos , Cyprinidae/fisiología , Oxazepam/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Ansiolíticos/análisis , Ansiolíticos/sangre , Cyprinidae/sangre , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Especificidad de Órganos , Oxazepam/análisis , Oxazepam/sangre , Distribución Tisular , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...