Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Eur J Pharm Sci ; 198: 106795, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38729224

The overarching premise of this investigation is that injectable, long-acting antimalarial medication would encourage adherence to a dosage regimen for populations at risk of contracting the disease. To advance support for this goal, we have developed oil-based formulations of ELQ-331 (a prodrug of ELQ-300) that perform as long-acting, injectable chemoprophylactics with drug loading as high as 160 mg/ml of ELQ-331. In a pharmacokinetic study performed with rats, a single intramuscular injection of 12.14 mg/kg maintained higher plasma levels than the previously established minimum fully protective plasma concentration (33.25 ng/ml) of ELQ-300 for more than 4 weeks. The formulations were well tolerated by the rats and the tested dose produced no adverse reactions. We believe that by extending the length of time between subsequent injections, these injectable oil-based solutions of ELQ-331 can offer a more accessible, low-cost option for long-acting disease prevention and reduced transmission in malaria-endemic regions and may also be of use to travelers.


Antimalarials , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Injections, Intramuscular , Male , Rats , Rats, Sprague-Dawley , Delayed-Action Preparations/administration & dosage , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Malaria/drug therapy
2.
ACS Infect Dis ; 10(4): 1405-1413, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38563132

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Babesiosis , Quinolones , Mice , Humans , Animals , Babesiosis/drug therapy , Babesiosis/parasitology , Quinolones/pharmacology , Atovaquone/pharmacology , Atovaquone/therapeutic use
3.
J Labelled Comp Radiopharm ; 67(5): 186-196, 2024 May 15.
Article En | MEDLINE | ID: mdl-38661253

Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.


Chemistry Techniques, Synthetic , Deuterium , Quinolones , Quinolones/chemical synthesis , Quinolones/chemistry , Deuterium/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology
4.
J Infect Dis ; 226(7): 1267-1275, 2022 09 28.
Article En | MEDLINE | ID: mdl-35512141

Human babesiosis is a malaria-like illness caused by tick-borne intraerythrocytic Babesia parasites of the Apicomplexa phylum. Whereas several species of Babesia can cause severe disease in humans, the ability to propagate Babesia duncani both in vitro in human erythrocytes and in mice makes it a unique pathogen to study Babesia biology and pathogenesis. Here we report an optimized B. duncani in culture-in mouse (ICIM) model that combines continuous in vitro culture of the parasite with a precise model of lethal infection in mice. We demonstrate that B. duncani-infected erythrocytes as well as free merozoites can cause lethal infection in C3H/HeJ mice. Highly reproducible parasitemia and survival outcomes could be established using specific parasite loads in different mouse genetic backgrounds. Using the ICIM model, we discovered 2 new endochin-like quinolone prodrugs (ELQ-331 and ELQ-468) that alone or in combination with atovaquone are highly efficacious against B. duncani and Babesia microti.


Babesia , Parasites , Prodrugs , Quinolones , Ticks , Animals , Atovaquone/pharmacology , Babesia/genetics , Humans , Mice , Mice, Inbred C3H , Virulence
5.
Antimicrob Agents Chemother ; 65(9): e0066221, 2021 08 17.
Article En | MEDLINE | ID: mdl-34152821

An effective strategy to control blood-borne diseases and prevent outbreak recrudescence involves targeting conserved metabolic processes that are essential for pathogen viability. One such target for Plasmodium and Babesia, the infectious agents of malaria and babesiosis, respectively, is the mitochondrial cytochrome bc1 protein complex, which can be inhibited by endochin-like quinolones (ELQ) and atovaquone. We used the tick-transmitted and culturable blood-borne pathogen Babesia duncani to evaluate the structure-activity relationship, safety, efficacy, and mode of action of ELQs. We identified a potent and highly selective ELQ prodrug (ELQ-502), which, alone or in combination with atovaquone, eliminates B. microti and B. duncani infections in vitro and in mouse models of parasitemia and lethal infection. The strong efficacy at low dose, excellent safety, bioavailability, and long half-life of this experimental therapy make it an ideal clinical candidate for the treatment of human infections caused by Babesia and its closely related apicomplexan parasites.


Babesia , Babesiosis , Animals , Atovaquone/pharmacology , Babesiosis/drug therapy , Babesiosis/prevention & control , Cytochromes , Mice , Parasitemia/drug therapy
6.
Org Process Res Dev ; 25(8): 1841-1852, 2021 Aug 20.
Article En | MEDLINE | ID: mdl-35110959

The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted ß-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.

7.
Article En | MEDLINE | ID: mdl-32094134

Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesiin vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species.


Antimalarials/pharmacology , Plasmodium knowlesi/drug effects , Proguanil/pharmacology , Quinolones/pharmacology , Animals , Atovaquone/pharmacology , Drug Interactions , Drug Synergism , Microbial Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium knowlesi/growth & development
8.
Malar J ; 18(1): 291, 2019 Aug 27.
Article En | MEDLINE | ID: mdl-31455339

BACKGROUND: The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. METHODS: Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. RESULTS: A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4-5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60-80 nM). CONCLUSIONS: Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.


Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Plasmodium yoelii/drug effects , Quinolones/adverse effects , Quinolones/pharmacokinetics , Animals , Female , Mice , Prodrugs/adverse effects , Prodrugs/pharmacokinetics
9.
J Med Chem ; 62(7): 3475-3502, 2019 04 11.
Article En | MEDLINE | ID: mdl-30852885

Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.


Acridones/chemistry , Acridones/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Acridones/therapeutic use , Animals , Antimalarials/therapeutic use , Disease Models, Animal , Hep G2 Cells , Humans , Malaria/drug therapy , Mice , Plasmodium/classification , Plasmodium/drug effects , Species Specificity , Structure-Activity Relationship
10.
ACS Infect Dis ; 3(10): 728-735, 2017 10 13.
Article En | MEDLINE | ID: mdl-28927276

ELQ-300 is a preclinical antimalarial drug candidate that is active against liver, blood, and transmission stages of Plasmodium falciparum. While ELQ-300 is highly effective when administered in a low multidose regimen, poor aqueous solubility and high crystallinity have hindered its clinical development. To overcome its challenging physiochemical properties, a number of bioreversible alkoxycarbonate ester prodrugs of ELQ-300 were synthesized. These bioreversible prodrugs are converted to ELQ-300 by host and parasite esterase action in the liver and bloodstream of the host. One such alkoxycarbonate prodrug, ELQ-331, is curative against Plasmodium yoelii with a single low dose of 3 mg/kg in a murine model of patent malaria infection. ELQ-331 is at least as fully protective as ELQ-300 in a murine malaria prophylaxis model when delivered 24 h before sporozoite inoculation at an oral dose of 1 mg/kg. Here, we show that ELQ-331 is a promising prodrug of ELQ-300 with improved physiochemical and metabolic properties and excellent potential for clinical formulation.


Antimalarials/chemical synthesis , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Prodrugs/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Animals , Electron Transport Complex III/metabolism , Malaria/drug therapy , Mice , Mitochondria/enzymology , Molecular Structure , Plasmodium falciparum/enzymology , Prodrugs/chemistry
11.
ACS Infect Dis ; 2(7): 500-8, 2016 07 08.
Article En | MEDLINE | ID: mdl-27626102

New treatments for tuberculosis infection are critical to combat the emergence of multidrug- and extensively drug-resistant Mycobacterium tuberculosis (Mtb). We report the characterization of a diphenylether-modified adamantyl 1,2-diamine that we refer to as TBL-140, which has a minimal inhibitory concentration (MIC99) of 1.2 µg/mL. TBL-140 is effective against drug-resistant Mtb and nonreplicating bacteria. In addition, TBL-140 eliminates expansion of Mtb in cell culture infection assays at its MIC. To define the mechanism of action of this compound, we performed a spontaneous mutant screen and biochemical assays. We determined that TBL-140 treatment affects the proton motive force (PMF) by perturbing the transmembrane potential (ΔΨ), consistent with a target in the electron transport chain (ETC). As a result, treated bacteria have reduced intracellular ATP levels. We show that TBL-140 exhibits greater metabolic stability than SQ109, a structurally similar compound in clinical trials for treatment of MDR-TB infections. Combined, these results suggest that TBL-140 should be investigated further to assess its potential as an improved therapeutic lead against Mtb.


Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Diamines/chemistry , Drug Design , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Phenyl Ethers/chemistry , Structure-Activity Relationship , Tuberculosis/drug therapy
12.
Antimicrob Agents Chemother ; 60(8): 4853-9, 2016 08.
Article En | MEDLINE | ID: mdl-27270285

Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV.


Antimalarials/pharmacology , Atovaquone/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Quinolones/pharmacology , Animals , Drug Combinations , Drug Therapy, Combination/methods , Female , Mice , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Proguanil/pharmacology
13.
J Exp Med ; 213(7): 1307-18, 2016 06 27.
Article En | MEDLINE | ID: mdl-27270894

Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure. Here, we provide evidence for radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone (ELQ) prodrug and atovaquone. In vivo efficacy studies in mice using ELQ-271, ELQ-316, and the ELQ-316 prodrug, ELQ-334, demonstrated excellent growth inhibitory activity against the parasite, with potency equal to that of orally administered atovaquone at 10 mg/kg. Analysis of recrudescent parasites after ELQ or atovaquone monotherapy identified genetic substitutions in the Qi or Qo sites, respectively, of the cytochrome bc1 complex. Impressively, a combination of ELQ-334 and atovaquone, at doses as low as 5.0 mg/kg each, resulted in complete clearance of the parasite with no recrudescence up to 122 d after discontinuation of therapy. These results will set the stage for future clinical evaluation of ELQ and atovaquone combination therapy for treatment of human babesiosis.


Atovaquone/pharmacology , Babesia microti/immunology , Babesiosis/drug therapy , Immunologic Deficiency Syndromes/parasitology , Prodrugs/pharmacology , Quinolones/pharmacology , Animals , Babesiosis/genetics , Babesiosis/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Mice , Mice, SCID
14.
Am J Trop Med Hyg ; 92(6): 1195-201, 2015 Jun.
Article En | MEDLINE | ID: mdl-25918204

Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development.


Antimalarials/therapeutic use , Electron Transport Complex III/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Phenyl Ethers/therapeutic use , Quinolones/therapeutic use , Animals , Antimalarials/administration & dosage , Drug Resistance , Electron Transport Complex III/metabolism , Female , Mice , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects
15.
Antimicrob Agents Chemother ; 59(4): 1977-82, 2015 Apr.
Article En | MEDLINE | ID: mdl-25605352

The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs.


Antimalarials/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Quinolones/pharmacology , Animals , Cytochromes b/genetics , Cytochromes b/metabolism , Drug Resistance , Electron Transport Complex III/genetics , Models, Molecular , Mutation/genetics , Plasmodium falciparum/genetics , Protein Binding , Structure-Activity Relationship
16.
J Med Chem ; 57(9): 3818-34, 2014 May 08.
Article En | MEDLINE | ID: mdl-24720377

The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers. The initial prototype, ELQ-233, exhibited low nanomolar IC50 values against all tested strains including clinical isolates harboring resistance to atovaquone. ELQ-271 represented the next critical step in the iterative optimization process, as it was stable to metabolism and highly effective in vivo. Continued analoging revealed that the substitution pattern on the benzenoid ring of the quinolone core significantly influenced reactivity with the host enzyme. This finding led to the rational design of highly selective ELQs with outstanding oral efficacy against murine malaria that is superior to established antimalarials chloroquine and atovaquone.


Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Quinolones/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Drug Discovery , HEK293 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Quinolones/chemical synthesis , Quinolones/chemistry , Rats , Spectrometry, Mass, Electrospray Ionization
17.
Sci Transl Med ; 5(177): 177ra37, 2013 Mar 20.
Article En | MEDLINE | ID: mdl-23515079

The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.


Antimalarials/pharmacology , Quinolones/pharmacology , Animals , Antimalarials/chemistry , Atovaquone/chemistry , Atovaquone/pharmacology , Drug Resistance , Drug Synergism , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mice , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Proguanil/chemistry , Proguanil/pharmacology , Pyridones/chemistry , Pyridones/pharmacology , Quinolones/chemistry
18.
Antimicrob Agents Chemother ; 56(7): 3475-80, 2012 Jul.
Article En | MEDLINE | ID: mdl-22508305

Sontochin was the original chloroquine replacement drug, arising from research by Hans Andersag 2 years after chloroquine (known as "resochin" at the time) had been shelved due to the mistaken perception that it was too toxic for human use. We were surprised to find that sontochin, i.e., 3-methyl-chloroquine, retains significant activity against chloroquine-resistant strains of Plasmodium falciparum in vitro. We prepared derivatives of sontochin, "pharmachins," with alkyl or aryl substituents at the 3 position and with alterations to the 4-position side chain to enhance activity against drug-resistant strains. Modified with an aryl substituent in the 3 position of the 7-chloro-quinoline ring, Pharmachin 203 (PH-203) exhibits low-nanomolar 50% inhibitory concentrations (IC(50)s) against drug-sensitive and multidrug-resistant strains and in vivo efficacy against patent infections of Plasmodium yoelii in mice that is superior to chloroquine. Our findings suggest that novel 3-position aryl pharmachin derivatives have the potential for use in treating drug resistant malaria.


Antimalarials/therapeutic use , Chloroquine/therapeutic use , Malaria/drug therapy , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Drug Resistance , Inhibitory Concentration 50 , Mice , Molecular Structure , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Plasmodium yoelii/drug effects , Plasmodium yoelii/pathogenicity
19.
Chemistry ; 15(38): 9897-904, 2009 Sep 28.
Article En | MEDLINE | ID: mdl-19681074

N-C bonded (non-bridged) 5-(1,2,3-triazol-1-yl)tetrazoles were synthesized by the Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition click reaction using 5-azido-N-(propan-2-ylidene)-1H-tetrazole (1). For example, the click reaction of 1 in the presence of CuSO(4)5 H(2)O and Na ascorbate at 65-70 degrees C for 48 h in CH(3)CN/H(2)O co-solvent was found to be limited to only terminal alkynes that have electron-withdrawing groups, CF(3)C[triple chemical bond]CH (2 a) and SF(5)C[triple chemical bond]CH (2 b), giving rise to isopropylidene-[5-(4-trifluoromethyl-1,2,3-triazol-1-yl)tetrazol-1-yl]amine (3 a) and isopropylidene-[5-(4-pentafluorosulfanyl-1,2,3-triazol-1-yl)tetrazol-1-yl]amine (3 b) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6-lutidine as catalysts at 0 degrees C for 13 h in CHCl(3), the click reaction was versatile toward alkynes even those having electron-donating groups. Properties of new products were determined and compared with those of 1. Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5-(1,2,3-triazol-1-yl)tetrazoles.

20.
Mol Biochem Parasitol ; 159(1): 64-8, 2008 May.
Article En | MEDLINE | ID: mdl-18308406

Mitochondrial electron transport is essential for survival in Plasmodium falciparum, making the cytochrome (cyt) bc(1) complex an attractive target for antimalarial drug development. Here we report that P. falciparum cultivated in the presence of a novel cyt bc(1) inhibitor underwent a fundamental transformation in biochemistry to a phenotype lacking a requirement for electron transport through the cyt bc(1) complex. Growth of the drug-selected parasite clone (SB1-A6) is robust in the presence of diverse cyt bc(1) inhibitors, although electron transport is fully inhibited by these same agents. This transformation defies expected molecular-based concepts of drug resistance, has important implications for the study of cyt bc(1) as an antimalarial drug target, and may offer a glimpse into the evolutionary future of Plasmodium.


Acridines , Antimalarials/pharmacology , Drug Resistance , Electron Transport Complex III/antagonists & inhibitors , Electron Transport , Plasmodium falciparum/drug effects , Acridines/chemistry , Acridines/pharmacology , Animals , Atovaquone/pharmacology , Drug Resistance/genetics , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Selection, Genetic , Serial Passage
...