Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 4): 134385, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111489

RESUMEN

Intranasal (IN) delivery offers potential to deliver antipsychotic drugs with improved efficacy to the brain. However, the solubilization of such drugs and the frequency of required re-application both represent challenges to its practical implementation in treating various mental illnesses including schizophrenia. Herein, we report a sprayable nanoparticle network hydrogel (NNH) consisting of hydrophobically-modified starch nanoparticles (SNPs) and mucoadhesive chitosan oligosaccharide lactate (COL) that can gel in situ within the nasal cavity and release ultra-small penetrative SNPs over time. Hydrophobization of the SNPs enables enhanced uptake and prolonged release of poorly water soluble drugs such as olanzapine from the NNH depot through mucous and ultimately into the brain via the nose-to-brain (N2B) pathway. The hydrogel shows high in vitro cytocompatibility in mouse striatal neuron and human primary nasal cell lines and in vivo efficacy in an amphetamine-induced pre-clinical rat schizophrenia model, with IN-delivered NNH hydrogels maintaining successful attenuation of locomotor activity for up to 4 h while all other tested treatments (drug-only IN or conventional intraperitoneal delivery) failed to attenuate at any time point past 0.5 h. As such, in situ-gelling NNHs represent a safe excipient for the IN delivery of hydrophobic drugs directly to the brain using customized SNPs that exhibit high penetration and drug complexing properties to maximize effective drug delivery.

2.
ACS Appl Bio Mater ; 7(3): 1947-1957, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38394042

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose. Herein, we report an antimicrobial poly(oligoethylene glycol methacrylate) (POEGMA)-based composite hydrogel loaded with fusidic acid-encapsulating self-assembled polylactic acid-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PLA-POEGMA) nanoparticles for the treatment of MRSA-infected skin wounds. The inclusion of the self-assembled nanoparticles (380 nm diameter when loaded with fusidic acid) does not alter the favorable mechanical properties and stability of the hydrogel in the context of its use as a wound dressing, while fusidic acid (FA) can be released from the hydrogel over ∼10 h via a diffusion-controlled mechanism. The antimicrobial studies demonstrate a clear zone of inhibition in vitro and a 1-2 order of magnitude inhibition of bacterial growth in vivo in an MRSA-infected full-thickness excisional murine wound model even at very low antibiotic doses. Our approach thus can both circumvent challenges in the local delivery of hydrophobic antimicrobial compounds and directly deliver antimicrobials into the wound to effectively combat methicillin-resistant infections using a fraction of the drug dose required using other clinically relevant strategies.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Polietilenglicoles , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ácido Fusídico/farmacología , Ácido Fusídico/uso terapéutico , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA