Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 3(43): 8445-8448, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32262683

RESUMEN

Herein we describe the use of vapour phase polymerisation (VPP) to form an elastomeric conducting hybrid, via the combination of poly(3,4-ethylene dioxythiophene) (PEDOT) and poly(glycerol sabecate) (PGS). The extent of PGS curing inversely affected the degree of PEDOT penetration in the material. At longer cure times, samples exhibited a negligible strain-resistance relationship. However, by reducing cure times and allowing greater penetration of PEDOT into PGS, more stable properties were observed over repeated deformation. The isolation of the PEDOT towards the surface allowed the use of laser engraving to pattern conducting tracks with ease. Such a benefit points to its potential for uninvolved, rapid manufacture of electrode arrays for biomedical devices or to allow precision cell interaction in tissue engineering.

2.
Analyst ; 140(3): 889-94, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25475046

RESUMEN

This work is the further development of the previous pH (effective) sensor work where a biologically derived proton-active redox centre - riboflavin (RFN) - was entrapped into a vapour phase polymerised poly(3,4-ethylenedioxythiophene) film and ferrocene (Fc) dissolved in the sample solution was used as an internal reference redox couple. Here, we report a disposable solid state pH (effective) sensor where we successfully incorporated both RFN and Fc into a single solid state electrode. The electrodes were then used for pH (effective) sensing where water is not required. The system was further miniaturised and simplified from a 3 electrode to a 2 electrode setup with the working electrode area being as small as 0.09 mm(2). The sensors show the ability to measure pH (effective) in both aqueous and non-aqueous media including ionic liquids (ILs) regardless of their hydrophobicity. This is an important step towards the ability to customise ILs or non-aqueous media with suitable proton activity (PA) for various applications e.g. customised ILs for biotechnological applications such as protein preservation and customised media for PA dependent reactions such as catalytic reactions.

3.
Biosens Bioelectron ; 52: 143-6, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24055930

RESUMEN

Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme ß-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol. This indicates that the ethanol vapour from the backside of the membrane has access to the active enzyme embedded in the electrode. The detecting range of the sensor is suitable for the detection of ethanol in fruit juices and for the baseline breath ethanol concentration of drunken driving. After continuous operation for 4.5h the system only showed a 20% decrease in the current output. The electrodes maintained 62% in current output after being refrigerated for 76 days. This work is continuing the progress of the immobilisation of specific enzymes for certain electrochemical reactions whereby the three-phase interface has to be maintained and/or the simultaneous separation of gas from liquid is required.


Asunto(s)
Alcoholes/aislamiento & purificación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Enzimas Inmovilizadas/química , Gases/aislamiento & purificación , Polímeros/química , Alcohol Deshidrogenasa/química , Transición de Fase
4.
Phys Chem Chem Phys ; 16(6): 2275-9, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24352071

RESUMEN

Ion mobility has a direct influence on the performance of conducting polymers in a number of applications as it dictates the operational speed of the devices. We report here the enhanced ion mobility of poly(3,4-ethylene dioxythiophene) after incorporation of gelatin. The gelatin-rich domains were seen to provide an ion pathway through the composites.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Gelatina/química , Iones/química , Polímeros/química , Materiales Biocompatibles/química , Interacciones Hidrofóbicas e Hidrofílicas
5.
Anal Chem ; 85(7): 3521-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23461486

RESUMEN

We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.

6.
J Mater Chem B ; 1(31): 3860-3867, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32261140

RESUMEN

Conducting polymers (CPs) are increasingly being used to interface with cells for applications in both bioelectronics and tissue engineering. To facilitate this interaction, cells need to adhere and grow on the CP surface. Extracellular matrix components are usually necessary to support or enhance cell attachment and growth on polymer substrates. Here we show the preparation of PEDOT(TOS):gelatin composites as a new biocompatible substrate for use in tissue engineering. Gelatin, a derivative of the extracellular matrix protein collagen, was incorporated into poly(3,4 ethylenedioxythiophene)-tosylate (PEDOT(TOS)) films via vapour phase polymerisation (VPP) without changing the electrochemical properties of the CP. Further, gelatin, incorporated into the PEDOT(TOS) film, was found to specifically support bovine brain capillary endothelial cell adhesion and growth, indicating that the functionality of the biomolecule was maintained. The biocompatibility of the composite films was demonstrated indicating the significant future potential of biocomposites of this type for use in promoting cell adhesion in electrically active materials for tissue engineering.

7.
Phys Chem Chem Phys ; 14(40): 14034-40, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22990074

RESUMEN

We describe for the first time the electrochemical co-deposition of composites based on a reactive base metal and graphene directly from a one-pot aqueous mixture containing graphene oxide and Zn(2+). In order to overcome stability issues the Zn(2+) concentration was kept below a critical threshold concentration, ensuring stable graphene oxide suspensions in the presence of cationic base metal precursors. This approach ensures the compatibility between the cationic base metal precursor and graphene oxide, which is more challenging compared to previously reported anionic noble metal complexes. Spectroscopic evidence suggests that the reason for destabilisation is zinc complexation involving the carboxylate groups of graphene oxide. The composition of the electrodeposited co-composites can be tuned by adjusting the concentration of the precursors in the starting mixture. The nano-composites show zinc particles (<3 nm) being uniformly dispersed amongst the graphene sheets. It is also demonstrated that the composites are electrochemically active and suitable for energy storage and energy conversion applications. However, a factor limiting the discharge efficiency is the reactivity of the base metal (low reduction potential and small particle size) which undergoes rapid oxidation when exposed to aqueous electrolytes.

8.
Macromol Rapid Commun ; 31(14): 1293-7, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21567527

RESUMEN

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such "wiring". These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.

9.
Macromol Rapid Commun ; 31(5): 479-83, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21590930

RESUMEN

We report for the first time an in situ photopolymerization of model co-monomers, 2-hydroxyethyl methacrylate (HEMA) and tetra (ethylene glycol) diacrylate (TEGDA), in an IL electrolyte containing I(2) for DSSCs. TiO(2) nanoparticles were used as the photo-initiator and co-gelator in a charge transfer polymerization reaction. The gel-IL polymer obtained was characterized in terms of the diffusion properties of the electrolyte. Preliminary results from DSSCs assembled using the gel-IL electrolyte showed energy conversion efficiency of 3.9% at 1 sun (AM1.5) and 5.0% at 0.39 sun illumination.

10.
Phys Chem Chem Phys ; 11(38): 8532-7, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19774284

RESUMEN

Thin, adherent films of CdS were electrodeposited on FTO coated glass by reduction of a thiosulfate precursor in the presence of Cd(II) ions in methyltributylphosphonium (P(1,4,4,4)) tosylate ionic liquid at 130-150 degrees C. The structural properties of the deposits have been characterized by profilometry, scanning electron microscopy (SEM) and optical microscopy. Energy dispersive X-ray spectroscopy (EDX) was used to evaluate the chemical composition, which was found to be close to stoichiometric. Semiconductor properties including the band gap and flat band potential were calculated from UV-Vis and impedance spectroscopy measurements. The crystal structure was analyzed by X-ray diffraction (XRD). The data obtained from XRD and band gap measurements suggest the presence of hexagonal CdS crystals. The possible growth mechanism of the films is also addressed.

11.
Chem Commun (Camb) ; (21): 3041-3, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19462080

RESUMEN

A novel self-polymerised ionic liquid (IL) gel was prepared at room temperature (RT), without light or heat or addition of initiator, using a new IL, choline formate (CF), and 2-hydroxyethyl methacrylate (HEMA).


Asunto(s)
Geles , Metacrilatos/química , Materiales Biocompatibles , Iones , Espectrofotometría Infrarroja
12.
Science ; 321(5889): 671-4, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18669857

RESUMEN

The air electrode, which reduces oxygen (O2), is a critical component in energy generation and storage applications such as fuel cells and metal/air batteries. The highest current densities are achieved with platinum (Pt), but in addition to its cost and scarcity, Pt particles in composite electrodes tend to be inactivated by contact with carbon monoxide (CO) or by agglomeration. We describe an air electrode based on a porous material coated with poly(3,4-ethylenedioxythiophene) (PEDOT), which acts as an O2 reduction catalyst. Continuous operation for 1500 hours was demonstrated without material degradation or deterioration in performance. O2 conversion rates were comparable with those of Pt-catalyzed electrodes of the same geometry, and the electrode was not sensitive to CO. Operation was demonstrated as an air electrode and as a dissolved O2 electrode in aqueous solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...