Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 47(8): 1449-1460, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34923576

RESUMEN

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic ß1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Adrenérgicos/farmacología , Adrenérgicos/uso terapéutico , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Ghrelina , Ratones , Ratas , Ratas Sprague-Dawley , Receptores de Ghrelina/uso terapéutico , Autoadministración , Área Tegmental Ventral
2.
J Biomed Sci ; 28(1): 83, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34852810

RESUMEN

Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.


Asunto(s)
Conducta Adictiva/psicología , Dopamina/deficiencia , Neuronas Dopaminérgicas/metabolismo , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo , Reflejo , Animales , Conducta Apetitiva/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Ratones , Ratas , Reflejo/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 117(15): 8611-8615, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32229573

RESUMEN

Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release. Furthermore, stimulation-induced eating is attenuated by dopamine lesions or receptor antagonists. Here we explored the involvement of dopamine in LH stimulation-induced eating. LH stimulation caused sated mice to pick up pellets of standard chow with latencies that varied based on stimulation intensity; once food was picked up, animals ate for the remainder of the 60-s stimulation period. However, lesion of VTA GABA neurons failed to disrupt this effect. Moreover, direct stimulation of VTA or substantia nigra dopamine cell bodies failed to induce food approach or eating. Looking further, we found that some LH GABA fibers pass through the VTA to more caudal sites, where they synapse onto neurons near the locus coeruleus (LC). Similar eating was induced by stimulation of LH GABA terminals or GABA cell bodies in this peri-LC region. Lesion of peri-LC GABA neurons blocked LH stimulation-induced eating, establishing them as a critical downstream circuit element for LH neurons. Surprisingly, lesions did not alter body weight, suggesting that this system is not involved in the hunger or satiety mechanisms that govern normal feeding. Thus, we present a characterization of brain circuitry that may promote overeating and contribute to obesity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/fisiología , Área Tegmental Ventral/fisiología , Animales , Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Femenino , Neuronas GABAérgicas/citología , Área Hipotalámica Lateral/citología , Masculino , Ratones , Vías Nerviosas , Receptores de GABA-A/metabolismo , Recompensa , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo
4.
Annu Rev Psychol ; 71: 79-106, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31905114

RESUMEN

Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.


Asunto(s)
Conducta Adictiva/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Memoria a Largo Plazo/fisiología , Motivación/fisiología , Receptores Dopaminérgicos/metabolismo , Recompensa , Animales , Humanos
5.
Pharmacol Biochem Behav ; 176: 53-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414405

RESUMEN

The dopamine system-essential for mood and movement-can be activated in two ways: by excitatory inputs that cause burst firing and stamp-in learning or by slow excitatory or inhibitory inputs-like leptin, insulin, ghrelin, or corticosterone-that decrease or increase single-spike (pacemaker) firing rate and that modulate motivation. In the present study we monitored blood samples taken prior to and during intravenous cocaine or saline self-administration in rats. During cocaine-taking, growth hormone and acetylated ghrelin increased 10-fold; glucagon-like peptide-1 (GLP-1) doubled; non-acetylated ghrelin, insulin-like growth factor-1 (IGF-1), and corticosterone increased by 50% and adiponectin increased by 17%. In the same blood samples, leptin, insulin, gastric inhibitory polypeptide (GIP), and prolactin decreased by 40-70%. On the first day of testing under extinction conditions-where the animals earned unexpected saline instead of cocaine-5-fold increases were seen for growth hormone and acetylated ghrelin and equal changes-in amplitude and latency-were seen in each of the other cases except for IGF-1 (which increased at a slower rate). Single-spike firing affects the tonic activation level of the dopamine system, involving very different controls than those that drive burst firing; thus, the present data suggest interesting new targets for medications that might be used in the early stages of drug abstinence.


Asunto(s)
Trastornos Relacionados con Cocaína/sangre , Cocaína/farmacología , Sustitución de Medicamentos/métodos , Solución Salina/farmacología , Transducción de Señal/efectos de los fármacos , Adiponectina/sangre , Animales , Cocaína/administración & dosificación , Corticosterona/sangre , Modelos Animales de Enfermedad , Polipéptido Inhibidor Gástrico/sangre , Ghrelina/sangre , Péptido 1 Similar al Glucagón/sangre , Hormona del Crecimiento/sangre , Inyecciones Intravenosas , Insulina/sangre , Leptina/sangre , Prolactina/sangre , Ratas , Recompensa , Solución Salina/administración & dosificación , Autoadministración
6.
Neuropsychopharmacology ; 43(4): 680-689, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28984293

RESUMEN

Brain stimulation has identified two central subsets of stimulation sites with motivational relevance. First, there is a large and disperse set of sites where stimulation is reinforcing, increasing the frequency of the responses it follows, and second, a much more restricted set of sites where-along with reinforcement-stimulation also has drive-like effects, instigating feeding, copulation, predation, and other motivated acts in otherwise sated or peaceful animals. From this work a dispersed but synaptically interconnected network of reinforcement circuitry is emerging: it includes afferents to the ventral tegmental area and substantia nigra; the dopamine systems themselves; glutamatergic afferents to the striatum; and one of two dopamine-receptor-expressing efferent pathways of the striatum. Stimulation of a limited subset of these sites, including descending inhibitory medial forebrain bundle fibers, induces both feeding and reinforcement, and suggests the possibility of a subset of fibers where stimulation has both drive-like and reinforcing effects. This review stresses the common findings of sites and connectivity between electrical and optogenetic studies of core drive and reinforcement sites. By doing so, it suggests the biological importance of optogenetic follow-up of less-publicized electrical stimulation findings. Such studies promise not only information about origins, neurotransmitters, and connectivity of related networks, by covering more sensory and at least one putative motor component they also promote a much deeper understanding of the breadth of motivational function.


Asunto(s)
Encéfalo/fisiología , Motivación/fisiología , Red Nerviosa/fisiología , Neurotransmisores/fisiología , Refuerzo en Psicología , Recompensa , Animales , Cuerpo Estriado/fisiología , Humanos , Vías Nerviosas/fisiología , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología
7.
Nat Rev Neurosci ; 18(12): 741-752, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29142296

RESUMEN

Behaviours such as eating, copulating, defending oneself or taking addictive drugs begin with a motivation to initiate the behaviour. Both this motivational drive and the behaviours that follow are influenced by past and present experience with the reinforcing stimuli (such as drugs or energy-rich foods) that increase the likelihood and/or strength of the behavioural response (such as drug taking or overeating). At a cellular and circuit level, motivational drive is dependent on the concentration of extrasynaptic dopamine present in specific brain areas such as the striatum. Cues that predict a reinforcing stimulus also modulate extrasynaptic dopamine concentrations, energizing motivation. Repeated administration of the reinforcer (drugs, energy-rich foods) generates conditioned associations between the reinforcer and the predicting cues, which is accompanied by downregulated dopaminergic response to other incentives and downregulated capacity for top-down self-regulation, facilitating the emergence of impulsive and compulsive responses to food or drug cues. Thus, dopamine contributes to addiction and obesity through its differentiated roles in reinforcement, motivation and self-regulation, referred to here as the 'dopamine motive system', which, if compromised, can result in increased, habitual and inflexible responding. Thus, interventions to rebalance the dopamine motive system might have therapeutic potential for obesity and addiction.


Asunto(s)
Conducta Adictiva/tratamiento farmacológico , Dopamina/farmacología , Adicción a la Comida/tratamiento farmacológico , Motivación/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Animales , Conducta Adictiva/fisiopatología , Dopamina/metabolismo , Humanos , Refuerzo en Psicología
8.
PLoS One ; 11(7): e0158885, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27387668

RESUMEN

Electrical stimulation of the lateral hypothalamus can motivate feeding or can serve as a reward in its own right. It remains unclear whether the same or independent but anatomically overlapping circuitries mediate the two effects. Electrical stimulation findings implicate medial forebrain bundle (MFB) fibers of passage in both effects, and optogenetic studies confirm a contribution from fibers originating in the lateral hypothalamic area and projecting to or through the ventral tegmental area. Here we report that optogenetic activation of ventral tegmental fibers from cells of origin in more anterior or posterior portions of the MFB failed to induce either reward or feeding. The feeding and reward induced by optogenetic activation of fibers from the lateral hypothalamic cells of origin were influenced similarly by variations in stimulation pulse width and pulse frequency, consistent with the hypothesis of a common substrate for the two effects. There were, however, several cases where feeding but not self-stimulation or self-stimulation but not feeding were induced, consistent with the hypothesis that distinct but anatomically overlapping systems mediate the two effects. Thus while optogenetic stimulation provides a more selective tool for characterizing the mechanisms of stimulation-induced feeding and reward, it does not yet resolve the question of common or independent substrates.


Asunto(s)
Estimulación Eléctrica , Área Hipotalámica Lateral/fisiología , Hipotálamo/fisiología , Recompensa , Autoestimulación/fisiología , Área Tegmental Ventral/fisiología , Animales , Impulso (Psicología) , Neuronas GABAérgicas/metabolismo , Masculino , Haz Prosencefálico Medial , Vías Nerviosas/fisiología , Neuronas/metabolismo , Optogenética , Ratas , Ratas Sprague-Dawley
9.
J Neurosci ; 36(10): 2975-85, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961951

RESUMEN

Electrical stimulation of the lateral hypothalamus (LH) has two motivational effects: long trains of stimulation induce drive-like effects such as eating, and short trains are rewarding. It has not been clear whether a single set of activated fibers subserves the two effects. Previous optogenetic stimulation studies have confirmed that reinforcement and induction of feeding can each be induced by selective stimulation of GABAergic fibers originating in the bed nucleus of the LH and projecting to the ventral tegmental area (VTA). In the present study we determined the optimal stimulation parameters for each of the two optogenetically induced effects in food-sated mice. Stimulation-induced eating was strongest with 5 Hz and progressively weaker with 10 and 20 Hz. Stimulation-induced reward was strongest with 40 Hz and progressively weaker with lower or higher frequencies. Mean preferred duration for continuous 40 Hz stimulation was 61.6 s in a "real-time" place preference task; mean preferred duration for 5 Hz stimulation was 45.6 s. The differential effects of high- and low-frequency stimulation of this pathway seem most likely to be due to differential effects on downstream targets.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/citología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Channelrhodopsins , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Ingestión de Alimentos/efectos de los fármacos , Estimulación Eléctrica , GABAérgicos/farmacología , Área Hipotalámica Lateral/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Estimulación Luminosa , Receptores de GABA-A/metabolismo , Autoestimulación , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
10.
Nat Neurosci ; 19(2): 198-205, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26814589

RESUMEN

In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA induces voracious feeding even in well-fed animals. In the absence of food, animals will work tirelessly, often lever-pressing thousands of times per hour, for electrical stimulation at the same site that provokes feeding, drinking and other species-typical motivated behaviors. Here we review the classic findings from electrical stimulation studies and integrate them with more recent work that has used contemporary circuit-based approaches to study the LHA. We identify specific anatomically and molecularly defined LHA elements that integrate diverse information arising from cortical, extended amygdala and basal forebrain networks to ultimately generate a highly specified and invigorated behavioral state conveyed via LHA projections to downstream reward and feeding-specific circuits.


Asunto(s)
Conducta Alimentaria/fisiología , Área Hipotalámica Lateral/fisiología , Recompensa , Animales , Estimulación Eléctrica , Humanos , Motivación , Vías Nerviosas/fisiología
11.
Neuropsychopharmacology ; 41(4): 1024-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26243270

RESUMEN

Cocaine is habit-forming because of its ability to enhance dopaminergic neurotransmission in the forebrain. In addition to neuronal inputs, forebrain dopamine circuits are modulated by hormonal influences; one of these is leptin, an adipose-derived hormone that attenuates the rewarding effects of food- and hunger-associated brain stimulation reward. Here we report reciprocal inhibition between the reward-related effects of leptin and the reward-related effects of cocaine in rats. First, we report that cocaine and the expectancy of cocaine each depresses plasma leptin levels. Second, we report that exogenous leptin, given systemically or directly into the ventral tegmental area, attenuates the ability of cocaine to elevate dopamine levels in the nucleus accumbens, the ability of cocaine to establish a conditioned place preference, and the ability of cocaine-predictive stimuli to prolong responding in extinction of cocaine-seeking. Thus, whereas leptin represents an endogenous antagonist of the habit-forming and habit-sustaining effects of cocaine, this antagonism is attenuated by cocaine and comes to be attenuated by the expectancy of cocaine.


Asunto(s)
Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Leptina/fisiología , Núcleo Accumbens/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Dopamina/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Leptina/administración & dosificación , Leptina/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Long-Evans , Transducción de Señal/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
12.
Behav Brain Res ; 287: 82-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25746513

RESUMEN

Cholinergic input to the ventral tegmental area (VTA), origin of the mesocorticolimbic dopamine system that is critical for cocaine reward, is important for both cocaine seeking and cocaine taking. The laterodorsal tegmental nucleus (LDTg) provides one of the two major sources of excitatory cholinergic input to the VTA, but little is known of the role of the LDTg in cocaine reward. LDTg cholinergic cells express urotensin-II receptors and here we used local microinjections of a conjugate of the endogenous ligand for these receptors with diphtheria toxin (Dtx::UII) to lesion the cholinergic cells of the LDTg in rats previously trained to self-administer cocaine (1mg/kg/infusion, i.v.). Lesioned rats showed long latencies to initiate cocaine self-administration after treatment with the toxin, which resulted in a reduction in cocaine intake per session. Priming injections reduced latencies to initiate responding for cocaine in lesioned rats, and once they began to respond the rats regulated their moment-to-moment cocaine intake within normal limits. Thus we conclude that while LDTg cholinergic cell loss does not significantly alter the rewarding effects of cocaine, LDTg lesions can reduce the rat's responsiveness to cocaine-predictive stimuli.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Núcleo Tegmental Pedunculopontino/fisiología , Animales , Neuronas Colinérgicas/efectos de los fármacos , Toxina Diftérica/toxicidad , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Ratas , Ratas Long-Evans , Autoadministración
13.
PLoS One ; 9(1): e84412, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465410

RESUMEN

Cholinergic input to the ventral tegmental area (VTA) is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg) provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII), the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65)% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.


Asunto(s)
Neuronas Colinérgicas/patología , Cocaína/administración & dosificación , Heroína/administración & dosificación , Núcleo Tegmental Pedunculopontino/patología , Trastornos Relacionados con Sustancias/patología , Acetilcolina/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Colinérgicos/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Condicionamiento Psicológico , Toxina Diftérica/administración & dosificación , Toxina Diftérica/toxicidad , Dopamina/metabolismo , Masculino , Neurotoxinas/administración & dosificación , Neurotoxinas/toxicidad , Núcleo Tegmental Pedunculopontino/efectos de los fármacos , Núcleo Tegmental Pedunculopontino/metabolismo , Ratas , Ratas Long-Evans , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/toxicidad , Autoadministración , Trastornos Relacionados con Sustancias/metabolismo , Urotensinas/administración & dosificación
14.
Neuropsychopharmacology ; 39(7): 1645-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24442095

RESUMEN

Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine-place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.


Asunto(s)
Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Dopamina/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Animales , Aprendizaje por Asociación/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Operante/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Vías de Administración de Medicamentos , Cloruro de Litio/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Factores de Tiempo
15.
Neuropsychopharmacology ; 39(2): 254-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121188

RESUMEN

What is the defining property of addiction? We dust off a several-decades-long debate about the relative importance of two forms of reinforcement­positive reinforcement, subjectively linked to drug-induced euphoria, and negative reinforcement, subjectively linked to the alleviation of pain­both of which figure importantly in addiction theory; each of these forms has dominated addiction theory in its time. We agree that addiction begins with the formation of habits through positive reinforcement and that drug-opposite physiological responses often establish the conditions for negative reinforcement to come into play at a time when tolerance, in the form of increasing reward thresholds, appears to develop into positive reinforcement. Wise's work has tended to focus on positive-reinforcement mechanisms that are important for establishing drug-seeking habits and reinstating them quickly after periods of abstinence, whereas Koob's work has tended to focus on the negative-reinforcement mechanisms that become most obvious in the late stages of sustained addiction. While we tend to agree with each other about the early and late stages of addiction, we hold different views as to (i) the point between early and late at which the diagnosis of 'addiction' should be invoked, (ii) the relative importance of positive and negative reinforcement leading up to this transition, and (iii) the degree to which the specifics of negative reinforcement can be generalized across the range of addictive agents.


Asunto(s)
Conducta Adictiva/diagnóstico , Conducta Adictiva/psicología , Refuerzo en Psicología , Trastornos Relacionados con Sustancias/diagnóstico , Trastornos Relacionados con Sustancias/psicología , Animales , Encéfalo/patología , Humanos
16.
J Neurosci ; 33(21): 9050-5, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23699516

RESUMEN

While glutamate in the nucleus accumbens (NAS) contributes to the promotion of drug-seeking by drug-predictive cues, it also appears to play a role in the inhibition of drug-seeking following extinction procedures. Thus we measured extracellular fluctuations of NAS glutamate in response to discriminative stimuli that signaled either cocaine availability or cocaine omission. We trained rats to self-administer intravenous cocaine and then to recognize discriminative odor cues that predicted either sessions where cocaine was available or alternating sessions where it was not (saline substituted for cocaine). Whereas responding in cocaine availability sessions remained stable, responding in cocaine omission sessions progressively declined to chance levels. We then determined the effects of each odor cue on extracellular glutamate in the core and shell subregions of NAS preceding and accompanying lever pressing under an extinction condition. Glutamate levels were elevated in both core and shell by the availability odor and depressed in the core but not the shell by the omission odor. Infusion of kynurenic acid (an antagonist for ionotropic glutamate receptors) into core but not shell suppressed responding associated with the availability odor, but had no effect on the suppression associated with the omission odor. Thus cocaine-predictive cues appear to promote cocaine seeking in part by elevating glutamatergic neurotransmission in the core of NAS, whereas cocaine-omission cues appear to suppress cocaine seeking in part by depressing glutamatergic receptor activation in the same region.


Asunto(s)
Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Mezclas Complejas/metabolismo , Condicionamiento Operante/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Quinurénico/farmacología , Masculino , Microdiálisis , Odorantes , Ratas , Ratas Long-Evans , Autoadministración , Factores de Tiempo
17.
Neuropsychopharmacology ; 38(9): 1763-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23535778

RESUMEN

Cocaine has actions in the peripheral nervous system that reliably precede--and thus predict--its soon-to-follow central rewarding effects. In cocaine-experienced animals, the peripheral cocaine signal is relayed to the central nervous system, triggering excitatory input to the ventral tegmental origin of the mesocorticolimbic dopamine system, the system that mediates the rewarding effects of the drug. We used cocaine methiodide, a cocaine analog that does not cross the blood-brain barrier, to isolate the peripheral actions of cocaine and determine their central and behavioral effects in animals first trained to lever-press for cocaine hydrochloride (the centrally acting and abused form of the drug). We first confirmed with fast-scan cyclic voltammetry that cocaine methiodide causes rapid dopamine release from dopamine terminals in cocaine hydrochloride-trained rats. We then compared the ability of cocaine hydrochloride and cocaine methiodide to establish conditioned place preferences in rats with self-administration experience. While cocaine hydrochloride established stronger place preferences, cocaine methiodide was also effective and its effectiveness increased (incubated) over weeks of cocaine abstinence. Cocaine self-administration was extinguished when cocaine methiodide or saline was substituted for cocaine hydrochloride in the intravenous self-administration paradigm, but cocaine hydrochloride and cocaine methiodide each reinstated non-rewarded lever-pressing after extinction. Rats extinguished by cocaine methiodide substitution showed weaker cocaine-induced reinstatement than rats extinguished by saline substitution. These findings suggest that the conditioned peripheral effects of cocaine can contribute significantly to cocaine-induced (but not stress-induced) cocaine craving, and also suggest the cocaine cue as an important target for cue-exposure therapies for cocaine addiction.


Asunto(s)
Cocaína/análogos & derivados , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Recompensa , Animales , Cocaína/administración & dosificación , Dopamina/metabolismo , Extinción Psicológica/efectos de los fármacos , Masculino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Autoadministración
18.
Biol Psychiatry ; 73(9): 819-26, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23044182

RESUMEN

The question of whether (or to what degree) obesity reflects addiction to high-energy foods often narrows to the question of whether the overeating of these foods causes the same long-term neuroadaptations as are identified with the late stages of addiction. Of equal or perhaps greater interest is the question of whether common brain mechanisms mediate the acquisition and development of eating and drug-taking habits. The earliest evidence on this question is rooted in early studies of brain stimulation reward. Lateral hypothalamic electrical stimulation can be reinforcing in some conditions and can motivate feeding in others. That stimulation of the same brain region should be both reinforcing and drive inducing is paradoxical; why should an animal work to induce a drive-like state such as hunger? This is known as the drive-reward paradox. Insights into the substrates of the drive-reward paradox suggest an answer to the controversial question of whether the dopamine system--a system downstream from the stimulated fibers of the lateral hypothalamus--is more critically involved in wanting or in liking of various rewards including food and addictive drugs. That the same brain circuitry is implicated in the motivation for and the reinforcement by both food and addictive drugs extends the argument for a common mechanism underlying compulsive overeating and compulsive drug taking.


Asunto(s)
Conducta Adictiva/fisiopatología , Encéfalo/fisiopatología , Dopamina/fisiología , Impulso (Psicología) , Comportamiento de Búsqueda de Drogas/fisiología , Conducta Alimentaria/fisiología , Recompensa , Alimentos , Humanos
19.
Neuron ; 76(4): 790-803, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23177963

RESUMEN

Excitatory afferents to the nucleus accumbens (NAc) are thought to facilitate reward seeking by encoding reward-associated cues. Selective activation of different glutamatergic inputs to the NAc can produce divergent physiological and behavioral responses, but mechanistic explanations for these pathway-specific effects are lacking. Here, we compared the innervation patterns and synaptic properties of ventral hippocampus, basolateral amygdala, and prefrontal cortex input to the NAc. Ventral hippocampal input was found to be uniquely localized to the medial NAc shell, where it was predominant and selectively potentiated after cocaine exposure. In vivo, bidirectional optogenetic manipulations of this pathway attenuated and enhanced cocaine-induced locomotion. Challenging the idea that any of these inputs encode motivationally neutral information, activation of each discrete pathway reinforced instrumental behaviors. Finally, direct optical activation of medium spiny neurons proved to be capable of supporting self-stimulation, demonstrating that behavioral reinforcement is an explicit consequence of strong excitatory drive to the NAc.


Asunto(s)
Ácido Glutámico/metabolismo , Locomoción/fisiología , Neuronas/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Sinapsis/fisiología , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biofisica , Corteza Cerebral/fisiología , Channelrhodopsins , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Estimulación Eléctrica , Hipocampo/fisiología , Luz , Locomoción/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Estilbamidinas/metabolismo , Sinapsis/efectos de los fármacos , Transducción Genética
20.
Neuropsychopharmacology ; 37(13): 2863-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22948979

RESUMEN

Heroin and cocaine have very different unconditioned receptor-mediated actions; however, in the brain circuitry of drug-reward and motivation, the two drugs establish common conditioned consequences. A single experience with either drug can change the sensitivity of ventral tegmental area (VTA) dopamine neurons to glutamatergic input. In the case of cocaine, repeated intravenous self-administration establishes de novo VTA glutamate release and dopaminergic activation in response to conditioned stimuli and mild footshock stress. Here we determined whether repeated self-administration of heroin would establish similar glutamate release and dopaminergic activation. Although self-administration of heroin itself did not cause VTA glutamate release, conditioned glutamate release was seen when rats expecting rewarding heroin were given nonrewarding saline in its place. Mild footshock stress also caused glutamate release in heroin-trained animals. In each case, the VTA glutamate release was accompanied by elevations in VTA dopamine levels, indicative of dopaminergic activation. In each case, infusion of the ionotropic glutamate antagonist kynurenic acid blocked the VTA dopamine release associated with VTA glutamate elevation. Although glutamate levels in the extinction and reinstatement tests were similar to those reported in cocaine studies, the effects of heroin self-administration itself were quite different from what has been seen during cocaine self-administration.


Asunto(s)
Ácido Glutámico/metabolismo , Heroína/administración & dosificación , Medio Social , Estrés Psicológico/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Animales , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Masculino , Ratas , Ratas Long-Evans , Autoadministración , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...