Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38989909

RESUMEN

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Asunto(s)
Moléculas de Adhesión Celular , Proteínas de Drosophila , Evolución Molecular , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Filogenia , Duplicación de Gen , Drosophila/genética , Culicidae/genética
2.
Proc Natl Acad Sci U S A ; 121(29): e2319829121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976736

RESUMEN

In the developing human brain, only 53 stochastically expressed clustered protocadherin (cPcdh) isoforms enable neurites from individual neurons to recognize and self-avoid while simultaneously maintaining contact with neurites from other neurons. Cell assays have demonstrated that self-recognition occurs only when all cPcdh isoforms perfectly match across the cell boundary, with a single mismatch in the cPcdh expression profile interfering with recognition. It remains unclear, however, how a single mismatched isoform between neighboring cells is sufficient to block erroneous recognitions. Using systematic cell aggregation experiments, we show that abolishing cPcdh interactions on the same membrane (cis) results in a complete loss of specific combinatorial binding between cells (trans). Our computer simulations demonstrate that the organization of cPcdh in linear array oligomers, composed of cis and trans interactions, enhances self-recognition by increasing the concentration and stability of cPcdh trans complexes between the homotypic membranes. Importantly, we show that the presence of mismatched isoforms between cells drastically diminishes the concentration and stability of the trans complexes. Overall, we provide an explanation for the role of the cPcdh assembly arrangements in neuronal self/non-self-discrimination underlying neuronal self-avoidance.


Asunto(s)
Cadherinas , Neuronas , Isoformas de Proteínas , Humanos , Neuronas/metabolismo , Cadherinas/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Comunicación Celular , Simulación por Computador , Neuritas/metabolismo , Membrana Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(40): 24813-24824, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32963097

RESUMEN

Thousands of Down syndrome cell adhesion molecule (Dscam1) isoforms and ∼60 clustered protocadhrein (cPcdh) proteins are required for establishing neural circuits in insects and vertebrates, respectively. The strict homophilic specificity exhibited by these proteins has been extensively studied and is thought to be critical for their function in neuronal self-avoidance. In contrast, significantly less is known about the Dscam1-related family of ∼100 shortened Dscam (sDscam) proteins in Chelicerata. We report that Chelicerata sDscamα and some sDscamß protein trans interactions are strictly homophilic, and that the trans interaction is meditated via the first Ig domain through an antiparallel interface. Additionally, different sDscam isoforms interact promiscuously in cis via membrane proximate fibronectin-type III domains. We report that cell-cell interactions depend on the combined identity of all sDscam isoforms expressed. A single mismatched sDscam isoform can interfere with the interactions of cells that otherwise express an identical set of isoforms. Thus, our data support a model by which sDscam association in cis and trans generates a vast repertoire of combinatorial homophilic recognition specificities. We propose that in Chelicerata, sDscam combinatorial specificity is sufficient to provide each neuron with a unique identity for self-nonself discrimination. Surprisingly, while sDscams are related to Drosophila Dscam1, our results mirror the findings reported for the structurally unrelated vertebrate cPcdh. Thus, our findings suggest a remarkable example of convergent evolution for the process of neuronal self-avoidance and provide insight into the basic principles and evolution of metazoan self-avoidance and self-nonself discrimination.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Artrópodos/metabolismo , Animales , Proteínas de Artrópodos/genética , Artrópodos/clasificación , Artrópodos/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Comunicación Celular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Sci Rep ; 9(1): 6476, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019234

RESUMEN

Obligate root holoparasite Phelipanche aegyptiaca is an agricultural pest, which infests its hosts and feeds on the sap, subsequently damaging crop yield and quality. Its notoriously viable seed bank may serve as an ideal pest control target. The phytohormone abscisic acid (ABA) was shown to regulate P. aegyptiaca seed dormancy following strigolactones germination stimulus. Transcription analysis of signaling components revealed five ABA receptors and two co-receptors (PP2C). Transcription of lower ABA-affinity subfamily III receptors was absent in all tested stages of P. aegyptiaca development and parasitism stages. P. aegyptiaca ABA receptors interacted with the PP2Cs, and inhibited their activity in an ABA-dependent manner. Moreover, sequence analysis revealed multiple alleles in two P. aegyptiaca ABA receptors, with many non-synonymous mutations. Functional analysis of selected receptor alleles identified a variant with substantially decreased inhibitory effect of PP2Cs activity in-vitro. These results provide evidence that P. aegyptiaca is capable of biochemically perceiving ABA. In light of the possible involvement of ABA in parasitic activities, the discovery of active ABA receptors and PP2Cs could provide a new biochemical target for the agricultural management of P. aegyptiaca. Furthermore, the potential genetic loss of subfamily III receptors in this species, could position P. aegyptiaca as a valuable model in the ABA perception research field.


Asunto(s)
Ácido Abscísico/farmacología , Germinación/efectos de los fármacos , Orobanchaceae/metabolismo , Latencia en las Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/genética , Orobanchaceae/genética , Orobanchaceae/fisiología , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Semillas/genética , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Plant J ; 92(5): 774-786, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28891214

RESUMEN

Abiotic stresses have severe detrimental effects on agricultural productivity worldwide. Abscisic acid (ABA) levels rise in response to abiotic stresses, and play a role in coordinating physiological responses. ABA elicits its effects by binding a family of soluble receptors, increasing affinity of the receptors to type 2C phosphatases (PP2Cs) leading to phosphatase inhibition. In the current study, we conducted a comprehensive analysis of the ABA signaling pathway in the cereal model grass Brachypodium distachyon. The Brachypodium genome encodes a family of 10 functionally conserved ABA receptors. The 10th in the series, BdPYL10, encodes a defective receptor and is likely a pseudogene. Combinatorial protein interaction assay further validated computational analysis, which grouped Brachypodium ABA receptors into three subfamilies, similarly to Arabidopsis classification. Brachypodium subfamily III receptors inhibited PP2C activity in vitro and complemented Arabidopsis quadruple (pyr1/pyl1/pyl2/pyl4) mutant. BdPYL1 T-DNA mutant exhibited clear ABA hyposensitivity phenotypes during seedling establishment and in mature plants. Single receptor predominance is in agreement with high transcriptional abundance of only a small Brachypodium ABA receptors subset, harboring the higher marginal significance of BdPYL1. Our findings suggest that unlike the highly redundant ABA core signaling components of Arabidopsis, Brachypodium encompasses a more compact and specialized ABA receptor apparatus. This organization may contribute to plant adaptations to ecological niches. These results lay the groundwork for targeting the prominent ABA receptors for stress perception in grasses, and reveal functional differences and commonalities between monocots and eudicots.


Asunto(s)
Ácido Abscísico/metabolismo , Brachypodium/metabolismo , Receptores de Superficie Celular/fisiología , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Genoma de Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA