Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Article En | MEDLINE | ID: mdl-37998820

In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of ß-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.

2.
Eur J Med Chem ; 251: 115224, 2023 May 05.
Article En | MEDLINE | ID: mdl-36958177

The alarming increase in the resistance of bacteria to the currently available antibiotics necessitates the development of new effective antimicrobial agents that are active against bacterial pathogens causing major public health problems. For this purpose, our in-house libraries were screened against a wide panel of clinically relevant Gram-positive and Gram-negative bacteria, based on which compound I was selected for further optimization. Synthetic efforts in a group of arylurea derivatives of aryloxy(1-phenylpropyl) alicyclic diamines, followed with an in vitro evaluation of the activity against multidrug-resistant strains identified compound 44 (1-(3-chlorophenyl)-3-(1-{3-phenyl-3-[3-(trifluoromethyl)phenoxy] propyl}piperidin-4-yl)urea). Compound 44 showed antibacterial activity against Gram-positive bacteria including fatal drug-resistant strains i.e., Staphylococcus aureus (methicillin-resistant, MRSA; vancomycin-intermediate, VISA) and Enterococcus faecium (vancomycin-resistant, VREfm) at low concentrations (0.78-3.125 µg/mL) comparable to last resort antibiotics (i.e., vancomycin and linezolid). It is also potent against biofilm-forming S. aureus and Staphylococcus epidermidis (including linezolid-resistant, LRSE) strains, but with no activity against Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa). Compound 44 showed strong bactericidal properties against susceptible and drug-resistant Gram-positive bacteria. Depolarization of the bacterial cytoplasmic membrane induced by compound 44 suggests a dissipation of the bacterial membrane potential as its mechanism of antibacterial action. The high antimicrobial activity of compound 44, along with its selectivity over mammalian cells (lung MCR-5 and skin BJ fibroblast cell lines) and no hemolytic properties toward horse erythrocytes, proposes arylurea derivatives of aryloxy(1-phenylpropyl) alicyclic diamines for development of novel antibacterial agents.


Anti-Bacterial Agents , Anti-Infective Agents , Animals , Horses , Anti-Bacterial Agents/pharmacology , Linezolid/pharmacology , Vancomycin/pharmacology , Staphylococcus aureus , Diamines/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Bacteria , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Mammals
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article En | MEDLINE | ID: mdl-34360797

A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3-H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5-97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at ß-lactamase, thus protecting the antibiotic from undesirable biotransformation.


Adjuvants, Pharmaceutic/chemistry , Adjuvants, Pharmaceutic/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Azetidines/pharmacology , Infections/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azetidines/chemistry , Bacterial Proteins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coronavirus 229E, Human/drug effects , Cytostatic Agents/chemistry , Cytostatic Agents/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Molecular Dynamics Simulation , Oxacillin/chemistry , Penicillin-Binding Proteins/chemistry , Staphylococcus aureus/drug effects , Stereoisomerism , beta-Lactamases/chemistry
4.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article En | MEDLINE | ID: mdl-33669790

In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7-23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14-16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7-23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal "dual action" for ß-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.


Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Imidazoles/pharmacology , Morpholines/pharmacology , Allosteric Site , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Interactions , Drug Resistance, Multiple, Bacterial/drug effects , Hydrogen Bonding , Hydrogen-Ion Concentration , Imidazoles/chemical synthesis , Imidazoles/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Morpholines/chemical synthesis , Morpholines/chemistry , Solubility , Structure-Activity Relationship , Water
5.
Molecules ; 25(17)2020 Aug 20.
Article En | MEDLINE | ID: mdl-32825366

Herein, 15 phenylpiperazine 3-benzyl-5,5-dimethylhydantoin derivatives (1-15) were screened for modulatory activity towards Msr(A) efflux pump present in S. epidermidis bacteria. Synthesis, crystallographic analysis, biological studies in vitro and structure-activity relationship (SAR) analysis were performed. The efflux pump inhibitory (EPI) potency was determined by employing ethidium bromide accumulation assay in both Msr(A) efflux pump overexpressed (K/14/1345) and deficient (ATCC 12228) S. epidermidis strains. The series of compounds was also evaluated for the capacity to reduce the resistance of K/14/1345 strain to erythromycin, a known substrate of Msr(A). The study identified five strong modulators for Msr(A) in S. epidermidis. The 2,4-dichlorobenzyl-hydantoin derivative 9 was found as the most potent EPI, inhibiting the efflux activity in K/14/1345 at a concentration as low as 15.63 µM. Crystallography-supported SAR analysis indicated structural properties that may be responsible for the activity found. This study identified the first synthetic compounds able to inhibit Msr(A) efflux pump transporter in S. epidermidis. Thus, the hydantoin-derived molecules found can be an attractive group in search for antibiotic adjuvants acting via Msr(A) transporter.


Bacterial Proteins , Hydantoins , Membrane Transport Proteins , Staphylococcus epidermidis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydantoins/chemistry , Hydantoins/pharmacology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Staphylococcus epidermidis/chemistry , Staphylococcus epidermidis/metabolism
6.
Molecules ; 25(8)2020 Apr 14.
Article En | MEDLINE | ID: mdl-32295191

The carnivorous plant Dionaea muscipula J. Ellis (Venus flytrap) is a widely known medical herb, capable of producing various phenolic compounds known for their strong antioxidant and antibacterial properties. In the pharmaceutical industry, Venus flytrap is grown in tissue cultures, as the natural population of D. muscipula is very limited. Here, we describe an improved method to increase the quantity and quality of phenolic compounds produced in D. muscipula. This is achieved by combining biotic elicitation (using Cronobacter sakazakii bacteria lysate) of D. muscipula cultured with rotary shaking (hydromechanical stress), which we describe here for the first time. The antibacterial activity and the antioxidant properties of the obtained compounds were studied on two antibiotic-resistant human pathogenic bacteria. The proposed plant culture conditions resulted in an increase in fresh weight, as well as a higher total phenolic content, in comparison to traditional tissue cultures on agar-solidified medium. With the use of high-performance liquid chromatography, we demonstrated that the described elicitation strategy leads to an increased synthesis of myricetin, caffeic acid, ellagic acid and plumbagin in D. muscipula tissue. We also found that a higher level of antioxidant activity, exhibited by the plant extract, corresponded with its higher phenylpropanoid content. The bactericidal activity of the extract against Staphylococcus aureus was dependent on the duration of plant culture under described elicitation conditions, whereas neither elicitation condition (duration or elicitor concentration) seemed relevant for the bactericidal activity of the extract towards Escherichia coli. This suggest that Gram-negative bacteria are less sensitive to compounds derived from Venus flytrap tissue.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Droseraceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bacteria/drug effects , Dose-Response Relationship, Drug , Phenols/chemistry , Phylogeny
7.
Molecules ; 24(8)2019 Apr 16.
Article En | MEDLINE | ID: mdl-31014009

Bacterial multidrug resistance is becoming a growing problem for public health, due to the development and spreading of bacterial strains resistant to antimicrobials. In this study, the antibacterial and multidrug resistance reversing activity of a series of seleno-carbonyl compounds has been evaluated. The effects of eleven selenocompounds on bacterial growth were evaluated in Staphylococcus aureus, methicillin resistant S. aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Chlamydia trachomatis D. The combination effect of compounds with antibiotics was examined by the minimum inhibitory concentration reduction assay. Their efflux pump (EP) inhibitory properties were assessed using real-time fluorimetry. Relative expressions of EP and quorum-sensing genes were studied by quantitative PCR. Results showed that a methylketone selenoester had remarkable antibacterial activity against Gram-positive bacteria and potentiated the activity of oxacillin in MRSA. Most of the selenocompounds showed significant anti-chlamydial effects. The selenoanhydride and the diselenodiester were active inhibitors of the AcrAB-TolC system. Based on these results it can be concluded that this group of selenocompounds can be attractive potential antibacterials and EP inhibitors. The discovery of new derivatives with a significant antibacterial activity as novel selenocompounds, is of high impact in the fight against resistant pathogens.


Anti-Bacterial Agents , Selenium Compounds , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chlamydia trachomatis/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
8.
Molecules ; 24(3)2019 Jan 26.
Article En | MEDLINE | ID: mdl-30691112

Searching for new chemosensitizers of bacterial multidrug resistance (MDR), chemical modifications of (Z)-5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3H-imidazol-4(5H)-one (6) were performed. New compounds (7⁻17), with fused aromatic rings at position 5, were designed and synthesized. Crystallographic X-ray analysis proved that the final compounds (7⁻17) were substituted with tertiary amine-propyl moiety at position 3 and primary amine group at 2 due to intramolecular Dimroth rearrangement. New compounds were evaluated on their antibiotic adjuvant properties in either Gram-positive or Gram-negative bacteria. Efflux pump inhibitor (EPI) properties towards the AcrAB-TolC pump in Enterobacter aerogenes (EA289) were investigated in the real-time efflux (RTE) assay. Docking and molecular dynamics were applied to estimate an interaction of compounds 6⁻17 with penicillin binding protein (PBP2a). In vitro ADME-Tox properties were evaluated for compound 9. Most of the tested compounds reduced significantly (4-32-fold) oxacillin MIC in highly resistant MRSA HEMSA 5 strain. The anthracene-morpholine derivative (16) was the most potent (32-fold reduction). The tested compounds displayed significant EPI properties during RTE assay (37⁻97%). The naphthyl-methylpiperazine derivative 9 showed the most potent "dual action" of both oxacillin adjuvant (MRSA) and EPI (E. aerogenes). Molecular modeling results suggested the allosteric mechanism of action of the imidazolones, which improved binding of oxacillin in the PBP2a active site in MRSA.


Amines/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
J Hazard Mater ; 324(Pt A): 22-30, 2017 Feb 15.
Article En | MEDLINE | ID: mdl-26897703

Various bacteria, including diverse Staphylococci, reduce selenite to yield red selenium particles with diameters in the high nanometer to low micrometer range. Formation and accumulation of such particles in bacteria often results in cell death, triggered by a loss of thiols and formation of disruptive deposits inside the cell. Hence certain pathogenic bacteria are rather sensitive to the presence of selenite, whilst other organisms, such as small nematodes, do not employ this kind of nanotechnology, yet become affected by micromolar concentrations of such naturally generated materials. Selenium particles extracted from cultures of Staphylococcus carnosus and apparently stabilized by their natural protein coating, for instance, show considerable activity against the nematode Steinernema feltiae, Escherichia coli and Saccaromyces cerevisiae. Such natural nano- and micro-particles are also more active than mechanically generated selenium particles and may be applied as antimicrobial materials in Medicine and Agriculture.


Selenium Compounds/chemistry , Staphylococcus/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Antinematodal Agents/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Nanotechnology , Nematoda/drug effects , Particle Size , Particulate Matter , Saccharomyces cerevisiae/drug effects , Selenium Compounds/pharmacology , Staphylococcus/drug effects , Sulfhydryl Compounds/metabolism
10.
Molecules ; 22(12)2017 Dec 08.
Article En | MEDLINE | ID: mdl-29292789

In view of the pressing need to identify new antibacterial agents able to combat multidrug-resistant bacteria, we investigated a series of fused selenazolinium derivatives (1-8) regarding their in vitro antimicrobial activities against 25 ESKAPE-pathogen strains. Ebselen was used as reference compound. Most of the selenocompounds demonstrated an excellent in vitro activity against all S. aureus strains, with activities comparable to or even exceeding the one of ebselen. In contrast to ebselen, some selenazolinium derivatives (1, 3, and 7) even displayed significant actions against all Gram-negative pathogens tested. The 3-bromo-2-(1-hydroxy-1-methylethyl)[1,2]selenazolo[2,3-a]pyridinium chloride (1) was particularly active (minimum inhibitory concentrations, MICs: 0.31-1.24 µg/mL for MRSA, and 0.31-2.48 µg/mL for Gram-negative bacteria) and devoid of any significant mutagenicity in the Ames assay. Our preliminary mechanistic studies in cell culture indicated that their mode of action is likely to be associated with an alteration of intracellular levels of glutathione and cysteine thiols of different proteins in the bacterial cells, hence supporting the idea that such compounds interact with the intracellular thiolstat. This alteration of pivotal cysteine residues is most likely the result of a direct or catalytic oxidative modification of such residues by the highly reactive selenium species (RSeS) employed.


Anti-Bacterial Agents/chemistry , Azoles/chemistry , Organoselenium Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Azoles/pharmacology , Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Isoindoles , Microbial Sensitivity Tests , Molecular Structure , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Structure-Activity Relationship
11.
Pharmaceutics ; 8(2)2016 Apr 19.
Article En | MEDLINE | ID: mdl-27104554

Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude "waste" plant materials for specific practical applications, especially-but not exclusively-in developing countries lacking a more sophisticated industrial infrastructure.

12.
Eur J Med Chem ; 112: 258-269, 2016 Apr 13.
Article En | MEDLINE | ID: mdl-26900658

A series of novel arylpiperazine 5-(4-fluorophenyl)-5-methylhydantoins with 2-hydroxypropyl linker (2-15) was synthesized and evaluated on their affinity towards serotonin 5-HT7 receptor (5-HT7R) in comparison to other closely related GPCRs: serotonin 5-HT1A, and dopamine D2 receptors. The functional activity studied through the measurement of 5-HT7R-mediated cyclic AMP production in Human Embryonic Kidney 293 cells (HEK293) stably expressing human 5-HT7 proved their antagonistic properties. The lead structure was also examined in the preliminary metabolic stability study using human liver microsomes (HMLs). The process of selection of candidates for synthesis was supported by a special molecular modeling workflow including combinatorial library generation, docking, and machine learning-based assessment. Additionally, in silico predictions of selectivity over 5-HT1AR and D2R, as well as functional activity were carried out. The newly synthesized compounds were proved to possess a potent affinity for 5-HT7R, similar to that of the lead structure of 5-(4-fluorophenyl)-3-(3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)-5-methylimidazolidine-2,4-dione (1). For several derivatives, significant selectivity both over 5-HT1AR and D2R was found.


Hydantoins/chemistry , Hydantoins/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Receptors, Serotonin/metabolism , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacology , Adult , Cyclic AMP/metabolism , Drug Design , Female , HEK293 Cells , Humans , Hydantoins/metabolism , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Piperazines/metabolism , Serotonin Antagonists/metabolism
13.
Molecules ; 20(8): 13894-912, 2015 Jul 31.
Article En | MEDLINE | ID: mdl-26263963

Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.


Drug Design , Organoselenium Compounds/pharmacology , Salts/pharmacology , Selenium/pharmacology , Tellurium/pharmacology , Anti-Infective Agents/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Chalcogens/pharmacology , Microbial Sensitivity Tests , Organoselenium Compounds/chemistry , Oxidation-Reduction , Proteasome Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Selenium/chemistry , Staphylococcus aureus/cytology , Staphylococcus aureus/drug effects
14.
Eur J Med Chem ; 101: 313-25, 2015 Aug 28.
Article En | MEDLINE | ID: mdl-26160112

A series of amine derivatives of 5-aromatic imidazolidine-4-ones (7-19), representing three subgroups: piperazine derivatives of 5-arylideneimidazolones (7-13), piperazine derivatives of 5-arylideneimidazolidine-2,4-dione (14-16) and primary amines of 5-naphthyl-5-methylimidazolidine-2,4-diones (17-19), was evaluated for their ability to improve antibiotics effectiveness in two strains of Gram-positive Staphylococcus aureus: ATCC 25923 (a reference strain) and MRSA (methicillin resistant S. aureus) HEMSA 5 (a resistant clinical isolate). The latter compounds (17-19) were obtained by 4-step synthesis using Bucherer-Bergs condensation, two-phase bromoalkylation and Gabriel reactions. The naphthalen derivative: (Z)-5-(naphthalen-2-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)-one (10) was the most potent in combination with ß-lactam antibiotics and ciprofloxacin against the resistant strain. The high potency to increase efficacy of oxacillin was noted for (Z)-5-(anthracen-10-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)one (12) too. In order to explain the mechanism of action of the compounds 10 and 12, docking studies with the use of crystal structures of a penicillin binding protein (PBP2a) and MecR1 were carried out. Their outcomes suggested that the most probable mechanism of action of the active compounds is the interaction with MecR1. Molecular dynamic experiments performed for the active compounds and compound 13 (structurally similar to 12) supported this hypothesis and provided possible explanation of activity dependencies of the tested compounds in terms of the restoration of antibiotic efficacy in S. aureus MRSA HEMSA 5.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Imidazolidines/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Molecular , Anti-Bacterial Agents/chemical synthesis , Dose-Response Relationship, Drug , Imidazolidines/chemical synthesis , Imidazolidines/chemistry , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
15.
BMJ Case Rep ; 20112011 Jul 20.
Article En | MEDLINE | ID: mdl-22689665

The authors report two cases of pyroglutamic acidosis as a result of paracetamol and flucloxacillin therapy in patients with prosthesis infection following hemiarthroplasty for neck of femur fractures. Pyroglutamic acidosis is an important and often unrecognised cause of refractory metabolic acidosis that disproportionately affects older women, and can be caused by drugs such as paracetamol and flucloxacillin in the setting of sepsis, renal failure and malnutrition. Although relatively rare, the widespread use of these drugs in orthopaedic patients confirms the importance of this disorder.


Acetaminophen/adverse effects , Acidosis/chemically induced , Analgesics, Non-Narcotic/adverse effects , Anti-Bacterial Agents/adverse effects , Femoral Neck Fractures/surgery , Floxacillin/adverse effects , Hemiarthroplasty , Postoperative Complications/drug therapy , Sepsis/drug therapy , Aged, 80 and over , Female , Humans
...