Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Pharmacol Biochem Behav ; 196: 172996, 2020 09.
Article En | MEDLINE | ID: mdl-32668266

Opiate analgesics are one of the treatment options for severe chronic pain, including late-stage cancer, chronic back pain and other disorders. The recent resurgence in opioid overdose has highlighted the serious need for alternative medicines for pain management. While a role for potentiators of α2/3-containing GABAA receptors in the modulation of pain has been known for several years, advancements in this area required data from selective compounds. KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3- yl)oxazole) and analogs selectively potentiate GABAA receptors containing α2/3 subunits and have recently been shown to attenuate pain behaviors in several acute and chronic pain models in rodents. The present study was designed to ascertain whether KRM-II-81 and the structural analog MP-III-80 (3-ethyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)-1,2,4-oxadiazole) would block chemotherapeutic agent paclitaxel-induced pain in male, C57BL/6 mice. Both compounds significantly inhibited pain behaviors evoked by cold and tactile stimulation in paclitaxel-treated mice as did the neuropathic pain drug gabapentin. Subchronic dosing for 22 days with KRM-II-81 and MP-III-80 demonstrated enduring analgesic efficacy without tolerance development, while the effects of gabapentin showed evidence of tolerance development. KRM-II-81 and MP-III-80 also decreased marble-burying behavior in this mouse strain as did the anxiolytic drug chlordiazepoxide. In contrast to KRM-II-81 and MP-III-80, chlordiazepoxide had motor-impairing effects at anxiolytic-like doses. The data add to the literature documenting that these selective potentiators of α2/3-containing GABAA receptors are effective in a host of animal models used to detect novel analgesic drugs. The anxiolytic-like efficacy of these compounds fits well with the comorbidity of anxiety in patients with chronic pain and cancer.


Anti-Anxiety Agents/pharmacology , Antineoplastic Agents/adverse effects , GABA-A Receptor Agonists/pharmacology , Hyperalgesia/prevention & control , Oxazoles/pharmacology , Receptors, GABA-A/drug effects , Acute Disease , Animals , Chronic Disease , Drug Synergism , Drug Tolerance , Hyperalgesia/chemically induced , Male , Mice , Mice, Inbred C57BL , Neuralgia/chemically induced , Neuralgia/prevention & control
2.
Pharmacol Biochem Behav ; 194: 172927, 2020 07.
Article En | MEDLINE | ID: mdl-32333922

Substance abuse disorder continues to have devastating consequences for individuals and society and current therapies are not sufficient to provide the magnitude of medical impact required. Although some evidence suggests the use of ketamine in treating various substance use related- symptoms, its adverse event profile including dissociation, dysphoria, and abuse liability limit its potential as a therapy. Here, we outline experiments to test our hypothesis that (R)-ketamine can both alleviate withdrawal symptoms and produce effects that help sustain abstinence. In morphine-dependent rats, (R)-ketamine alleviated naloxone-precipitated withdrawal signs. (R)-ketamine also blocked morphine-induced place preference in mice without inducing place preference on its own. We also evaluated whether (R)-ketamine would induce anhedonia, a counter-indicated effect for a drug abuse treatment agent. S-(+)- but not R-(-)-ketamine produced anhedonia-like responses in rats that electrically self-stimulated the medial forebrain bundle (ICSS). However, time-course studies of ICSS are needed to fully appreciate these differences. These data begin to support the claim that (R)-ketamine will dampen withdrawal symptoms and drug liking, factors known to contribute to the cycle of drug addiction. In addition, these data suggest that (R)-ketamine would not produce negative mood or anhedonia that could interfere with treatment. It is suggested that continued investigation of (R)-ketamine as a novel therapeutic for substance abuse disorder be given consideration by the preclinical and clinical research communities. This suggestion is further encouraged by a recent report on the efficacy of (R)-ketamine in treatment-resistant depressed patients at a dose with little measurable dissociative side-effects.


Ketamine/pharmacology , Morphine/pharmacology , Opioid-Related Disorders/drug therapy , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacology , Dose-Response Relationship, Drug , Humans , Ketamine/administration & dosage , Male , Medial Forebrain Bundle/drug effects , Mice , Morphine/administration & dosage , Morphine Dependence/drug therapy , Morphine Dependence/metabolism , Naloxone/pharmacology , Opioid-Related Disorders/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Self Stimulation/drug effects , Substance Withdrawal Syndrome/metabolism
3.
Pharmacol Biochem Behav ; 180: 22-31, 2019 05.
Article En | MEDLINE | ID: mdl-30825491

Clinical evidence indicates that positive allosteric modulators (PAMs) of GABAA receptors have analgesic benefit in addition to efficacy in anxiety disorders. However, the utility of GABAA receptor PAMs as analgesics is compromised by the central nervous system side effects of non-selective potentiators. A selective potentiator of GABAA receptors associated with α2/3 subunits, KRM-II-81(5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole), has demonstrated anxiolytic, anticonvulsant, and antinociceptive effects in rodents with reduced motoric side effects. The present study evaluated the potential of KRM-II-81 as a novel analgesic. Oral administration of KRM-II-81 attenuated formalin-induced flinching; in contrast, diazepam was not active. KRM-II-81 attenuated nociceptive-associated behaviors engendered by chronic spinal nerve ligation (L5/L6). Diazepam decreased locomotion of rats at the dose tested in the formalin assay (10 mg/kg) whereas KRM-II-81 produced small decreases that were not dose-dependent (10-100 mg/kg). Plasma and brain levels of KRM-II-81 were used to demonstrate selectivity for α2/3- over α1-associated GABAA receptors and to define the degree of engagement of these receptors. Plasma and brain concentrations of KRM-II-81 were positively-associated with analgesic efficacy. GABA currents from isolated rat dorsal-root ganglion cultures were potentiated by KRM-II-81 with an ED50 of 32 nM. Measures of respiratory depression were reduced by alprazolam whereas KRM-II-81 was either inactive or produced effects with lower potency and efficacy. These findings add to the growing body of data supporting the idea that α2/3-selective GABAA receptor PAMs will have efficacy and tolerability as pain medications including those for neuropathic pain. Given their predicted anxiolytic effects, α2/3-selective GABAA receptor PAMs offer an additional inroad into the management of pain.


Analgesics/pharmacology , Drug Synergism , Formaldehyde/pharmacology , Oxazoles/pharmacology , Pain Measurement , Receptors, GABA-A/metabolism , Spinal Nerves/surgery , Adjuvants, Anesthesia/pharmacology , Administration, Oral , Alprazolam/administration & dosage , Alprazolam/pharmacology , Analgesics/administration & dosage , Analgesics/metabolism , Analgesics/therapeutic use , Animals , Behavior, Animal/drug effects , Diazepam/pharmacology , Dose-Response Relationship, Drug , GABA Modulators/administration & dosage , GABA Modulators/pharmacology , Ligation , Male , Neuralgia/drug therapy , Oxazoles/administration & dosage , Oxazoles/metabolism , Oxazoles/therapeutic use , Rats , Rats, Sprague-Dawley
4.
Pharmacol Biochem Behav ; 170: 9-13, 2018 07.
Article En | MEDLINE | ID: mdl-29715490

Data from transgenic animals and novel pharmacological agents has realigned scientific scrutiny on the therapeutic potential of positive allosteric modulators (PAMs) of α2/3-containing GABAA receptors. Evidence for analgesic, anticonvulsant, and anxiolytic activity of α2/3-selective PAMs has been presented along with the clinical potential for a milder motor-impacting profile compared to non-selective GABAA receptor PAMs. A new series of α2/3-selective PAMs was recently introduced which has anxiolytic and anticonvulsant activity in rodent models. These molecules also produce efficacy against pain in multiple animal models. Additionally, co-morbid states of depression are prevalent among patients with pain and patients with anxiety. Compounds were shown to be selective for α2 and α3 constructs over α1 (except KRM-II-82), α4, α5, and α6 proteins in electrophysiological assays in transfected HEK-293T cells. Utilizing the forced-swim assay in mice that detects conventional and novel antidepressant drugs, we demonstrate for the first time that α2/3-selective PAMs are active in the forced-swim assay at anxiolytic-producing doses. In contrast, activity in a related model, the tail-suspension test, was not observed. Diazepam was not active in the forced-swim assay when given alone but produced an antidepressant-like effect in mice when given in conjunction with the α1-preferring antagonist, ß-CCT, that attenuated the motor-impairing effects of diazepam. We conclude that these α2/3-selective PAMs deserve further scrutiny for their potential treatment of major depressive disorder. If effective, such a mechanism could add a beneficial antidepressant component to the anxiolytic, analgesic, and anticonvulsant spectrum of effects of these compounds.


Antidepressive Agents/pharmacology , Receptors, GABA-A/drug effects , Allosteric Regulation , Animals , Depressive Disorder, Major/drug therapy , Diazepam/pharmacology , HEK293 Cells , Hindlimb Suspension , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Swimming
5.
Neuropharmacology ; 137: 332-343, 2018 07 15.
Article En | MEDLINE | ID: mdl-29778948

HZ-166 has previously been characterized as an α2,3-selective GABAA receptor modulator with anticonvulsant, anxiolytic, and anti-nociceptive properties but reduced motor effects. We discovered a series of ester bioisosteres with reduced metabolic liabilities, leading to improved efficacy as anxiolytic-like compounds in rats. In the present study, we evaluated the anticonvulsant effects KRM-II-81 across several rodent models. In some models we also evaluated key structural analogs. KRM-II-81 suppressed hyper-excitation in a network of cultured cortical neurons without affecting the basal neuronal activity. KRM-II-81 was active against electroshock-induced convulsions in mice, pentylenetetrazole (PTZ)-induced convulsions in rats, elevations in PTZ-seizure thresholds, and amygdala-kindled seizures in rats with efficacies greater than that of diazepam. KRM-II-81 was also active in the 6 Hz seizure model in mice. Structural analogs of KRM-II-81 but not the ester, HZ-166, were active in all models in which they were evaluated. We further evaluated KRM-II-81 in human cortical epileptic tissue where it was found to significantly-attenuate picrotoxin- and AP-4-induced increases in firing rate across an electrode array. These molecules generally had a wider margin of separation in potencies to produce anticonvulsant effects vs. motor impairment on an inverted screen test than did diazepam. Ester bioisosters of HZ-166 are thus presented as novel agents for the potential treatment of epilepsy acting via selective positive allosteric amplification of GABAA signaling through α2/α3-containing GABA receptors. The in vivo data from the present study can serve as a guide to dosing parameters that predict engagement of central GABAA receptors.


Anticonvulsants/pharmacology , GABA-A Receptor Agonists/pharmacology , Oxazoles/pharmacology , Seizures/drug therapy , Action Potentials/drug effects , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacokinetics , Benzodiazepines/chemistry , Benzodiazepines/pharmacokinetics , Benzodiazepines/pharmacology , Biological Availability , Child , Diazepam/pharmacology , Disease Models, Animal , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/physiopathology , Female , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/pharmacokinetics , Humans , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Male , Mice , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Random Allocation , Rats, Sprague-Dawley , Seizures/physiopathology , Tissue Culture Techniques
6.
Pharmacol Biochem Behav ; 157: 35-40, 2017 06.
Article En | MEDLINE | ID: mdl-28442369

Positive allosteric modulators of GABAA receptors transduce a host of beneficial effects including anxiolytic actions. We have recently shown that bioavailability and anxiolytic-like activity can be improved by eliminating the ester functionality in imidazo[1,5-a][1,4]diazepines. In the present series of experiments, we further substantiate the value of heterocyle replacement of the ester for potential treatment of anxiety. None of three esters was active in a Vogel conflict test in rats that detects anxiolytic drugs like diazepam. Compounds 7 and 8, ester bioisosters, were selective for alpha 2 and 3 over alpha 1-containing GABAA receptors but also had modest efficacy at GABAA alpha 5-containing receptors. Compound 7 was efficacious and potent in this anxiolytic-detecting assay without affecting non-punished responding. The efficacies of the esters and of compound 7 were predicted from their efficacies as anticonvulsants against the GABAA antagonist pentylenetetrazole (PTZ). In contrast, the related structural analog, compound 8, did not produce anxiolytic-like effects in rats despite anticonvulsant efficacy. These data thus support the following conclusions: 1) ancillary pharmacological actions of compound 8 might be responsible for its lack of anxiolytic-like efficacy despite its efficacy as an anticonvulsant 2) esters of imidazo[1,5-a][1,4]diazepines do not demonstrate anxiolytic-like effects in rats due to their low bioavailability and 3) replacement of the ester function with suitable heterocycles markedly improves bioavailability and engenders molecules with the opportunity to have potent and efficacious effects in vivo that correspond to human anxiolytic actions.


Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Benzodiazepines/therapeutic use , GABA-A Receptor Agonists/therapeutic use , Receptors, GABA-A/physiology , Animals , Anti-Anxiety Agents/chemistry , Anxiety/psychology , Benzodiazepines/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , GABA-A Receptor Agonists/chemistry , HEK293 Cells , Humans , Male , Rats , Rats, Sprague-Dawley
7.
Pharmacol Biochem Behav ; 155: 43-55, 2017 04.
Article En | MEDLINE | ID: mdl-28285123

The novel mGlu2/3 receptor antagonist, LY3020371, has been shown to produce antidepressant-like effects comparable to that of the clinically-effective antidepressant ketamine. In the present study, we investigated whether LY3020371 would be predicted to be free of the side-effects and safety pharmacology issues associated with ketamine. In contrast to ketamine, LY3020371 produced small increases in locomotion and did not impair motor performance on an inverted screen. Ketamine, but not LY3020371, increased dopamine efflux in the nucleus accumbens of rats. Ketamine also produced cognitively-impairing effects in rats in a T-maze and in a psychomotor vigilance task and altered theta synchrony between the hippocampus and mPFC, whereas LY3020371 had either no significant impact or lesser effects in these assays. In mice, ketamine, but not LY3020371, negatively affected spontaneous alternation in a Y-maze. Rats were trained to discriminate LY3020371 from vehicle where 30mg/kg produced 100% drug-appropriate responding and the ED50 for LY3020371 was 9.4mg/kg, i.p. In rats discriminating LY3020371, neither d-amphetamine nor phencyclidine fully substituted for LY3020371 (35-45%) and the mGlu2/3 receptor agonist LY354740 partially attenuated the discriminative stimulus effects of LY3020371. These are the first data to demonstrate the discriminative stimulus effects of an mGlu2/3 receptor antagonist. Some alterations were suggested to occur in the density of mGlu2/3 receptor binding sites in the drug discrimination rats relative to their age-matched non-drug-exposed controls. In preclinical toxicology studies of 14day dosing of doses up to 1000mg/kg, i.v. in rats and up to 500m/kg, i.v. in Cynomologous monkeys, LY3020371 produced uM plasma exposures without producing critical toxicological findings. It is concluded that LY3020371 does not recapitulate the motor, cognitive, subjective, neurochemical, electrophysiological, or toxicological findings reported with ketamine. Thus, LY3020371 possesses both the efficacy signatures of a rapidly-acting antidepressant and a safety profile enabling proof of concept studies in patients.


Cognition/drug effects , Cyclohexanes/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/toxicity , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Substance-Related Disorders/etiology , Animals , Male , Rats , Rats, Sprague-Dawley
8.
J Pharmacol Exp Ther ; 361(1): 68-86, 2017 Apr.
Article En | MEDLINE | ID: mdl-28138040

The ability of the N-methyl-d-aspartate receptor antagonist ketamine to alleviate symptoms in patients suffering from treatment-resistant depression (TRD) is well documented. In this paper, we directly compare in vivo biologic responses in rodents elicited by a recently discovered metabotropic glutamate (mGlu) 2/3 receptor antagonist 2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY3020371) with those produced by ketamine. Both LY3020371 and ketamine increased the number of spontaneously active dopamine cells in the ventral tegmental area of anesthetized rats, increased O2 in the anterior cingulate cortex, promoted wakefulness, enhanced the efflux of biogenic amines in the prefrontal cortex, and produced antidepressant-related behavioral effects in rodent models. The ability of LY3020371 to produce antidepressant-like effects in the forced-swim assay in rats was associated with cerebrospinal fluid (CSF) drug levels that matched concentrations required for functional antagonist activity in native rat brain tissue preparations. Metabolomic pathway analyses from analytes recovered from rat CSF and hippocampus demonstrated that both LY3020371 and ketamine activated common pathways involving GRIA2 and ADORA1. A diester analog of LY3020371 [bis(((isopropoxycarbonyl)oxy)-methyl) (1S,2R,3S,4S,5R,6R)-2-amino-3-(((3,4-difluorophenyl)thio)methyl)-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylate (LY3027788)] was an effective oral prodrug; when given orally, it recapitulated effects of intravenous doses of LY3020371 in the forced-swim and wake-promotion assays, and augmented the antidepressant-like effects of fluoxetine or citalopram without altering plasma or brain levels of these compounds. The broad overlap of biologic responses produced by LY3020371 and ketamine supports the hypothesis that mGlu2/3 receptor blockade might be a novel therapeutic approach for the treatment of TRD patients. LY3020371 and LY3027788 represent molecules that are ready for clinical tests of this hypothesis.


Antidepressive Agents/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Ketamine/therapeutic use , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Antidepressive Agents/pharmacology , Depression/drug therapy , Depression/metabolism , Depression/psychology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Ketamine/pharmacology , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Treatment Outcome
9.
J Pharmacol Exp Ther ; 358(1): 71-82, 2016 07.
Article En | MEDLINE | ID: mdl-27189960

Ketamine is a rapidly acting antidepressant in patients with treatment-resistant depression (TRD). Although the mechanisms underlying these effects are not fully established, inquiry to date has focused on the triggering of synaptogenesis transduction pathways via glutamatergic mechanisms. Preclinical data suggest that blockade of metabotropic glutamate (mGlu2/3) receptors shares many overlapping features and mechanisms with ketamine and may also provide rapid efficacy for TRD patients. Central dopamine circuitry is recognized as an end target for mood regulation and hedonic valuation and yet has been largely neglected in mechanistic studies of antidepressant-relevant effects of ketamine. Herein, we evaluated the changes in dopaminergic neurotransmission after acute administration of ketamine and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid ] in preclinical models using electrophysiologic, neurochemical, and behavioral endpoints. When given acutely, both ketamine and LY341495, but not the selective serotonin reuptake inhibitor (SSRI) citalopram, increased the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), increased extracellular levels of dopamine in the nucleus accumbens and prefrontal cortex, and enhanced the locomotor stimulatory effects of the dopamine D2/3 receptor agonist quinpirole. Further, both ketamine and LY341495 reduced immobility time in the tail-suspension assay in CD1 mice, which are relatively resistant to SSRI antidepressants. Both the VTA neuronal activation and the antidepressant phenotype induced by ketamine and LY341495 were attenuated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo- (9CI)-benzo[f]quinoxaline-7-sulfonamide, indicating AMPA-dependent effects. These findings provide another overlapping mechanism of action of ketamine and mGlu2/3 receptor antagonism that differentiates them from conventional antidepressants and thus support the potential rapidly acting antidepressant actions of mGlu2/3 receptor antagonism in patients.


Amino Acids/pharmacology , Antidepressive Agents/pharmacology , Dopamine/metabolism , Ketamine/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Xanthenes/pharmacology , Action Potentials/drug effects , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Male , Mice, Inbred BALB C , Microdialysis , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Quinoxalines/pharmacology , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
11.
J Pharmacol Exp Ther ; 351(2): 448-56, 2014 Nov.
Article En | MEDLINE | ID: mdl-25187432

Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are mediating these therapeutic effects. We used the mouse forced-swim test, an antidepressant detecting assay, in wild-type and transgenic mice in which each muscarinic receptor subtype had been genetically deleted to define the relevant receptor subtypes. Only the M1 and M2 knockout (KO) mice had a blunted response to scopolamine in the forced-swim assay. In contrast, the effects of the tricyclic antidepressant imipramine were not significantly altered by gene deletion of any of the five muscarinic receptors. The muscarinic antagonists biperiden, pirenzepine, and VU0255035 (N-[3-oxo-3-[4-(4-pyridinyl)-1-piper azinyl]propyl]-2,1,3-benzothiadiazole-4-sulfonamide) with selectivity for M1 over M2 receptors also demonstrated activity in the forced-swim test, which was attenuated in M1 but not M2 receptor KO mice. An antagonist with selectivity of M2 over M1 receptors (SCH226206 [(2-amino-3-methyl-phenyl)-[4-[4-[[4-(3 chlorophenyl)sulfonylphenyl]methyl]-1-piperidyl]-1-piperidyl]methanone]) was also active in the forced-swim assay, and the effects were deleted in M2 (-/-) mice. Brain exposure and locomotor activity in the KO mice demonstrated that these behavioral effects of scopolamine are pharmacodynamic in nature. These data establish muscarinic M1 and M2 receptors as sufficient to generate behavioral effects consistent with an antidepressant phenotype and therefore as potential targets in the antidepressant effects of scopolamine.


Antidepressive Agents/pharmacology , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M2/metabolism , Scopolamine/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout/metabolism , Motor Activity/drug effects , Muscarinic Antagonists/pharmacology , Rats , Rats, Sprague-Dawley , Swimming/physiology
12.
J Pharmacol Exp Ther ; 351(1): 124-33, 2014 Oct.
Article En | MEDLINE | ID: mdl-25027316

Perampanel [Fycompa, 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile hydrate 4:3; Eisai Inc., Woodcliff Lake, NJ] is an AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor antagonist used as an adjunctive treatment of partial-onset seizures. We asked whether perampanel has AMPA receptor antagonist activity in both the cerebral cortex and hippocampus associated with antiepileptic efficacy and also in the cerebellum associated with motor side effects in rodent and human brains. We also asked whether epileptic or nonepileptic human cortex is similarly responsive to AMPA receptor antagonism by perampanel. In rodent models, perampanel decreased epileptic-like activity in multiple seizure models. However, doses of perampanel that had anticonvulsant effects were within the same range as those engendering motor side effects. Perampanel inhibited native rat and human AMPA receptors from the hippocampus as well as the cerebellum that were reconstituted into Xenopus oocytes. In addition, with the same technique, we found that perampanel inhibited AMPA receptors from hippocampal tissue that had been removed from a patient who underwent surgical resection for refractory epilepsy. Perampanel inhibited AMPA receptor-mediated ion currents from all the tissues investigated with similar potency (IC50 values ranging from 2.6 to 7.0 µM). Cortical slices from the left temporal lobe derived from the same patient were studied in a 60-microelectrode array. Large field potentials were evoked on at least 45 channels of the array, and 10 µM perampanel decreased their amplitude and firing rate. Perampanel also produced a 33% reduction in the branching parameter, demonstrating the effects of perampanel at the network level. These data suggest that perampanel blocks AMPA receptors globally across the brain to account for both its antiepileptic and side-effect profile in rodents and epileptic patients.


Anticonvulsants/therapeutic use , Brain/physiopathology , Epilepsy/drug therapy , Pyridones/therapeutic use , Receptors, AMPA/antagonists & inhibitors , Action Potentials , Adolescent , Animals , Anticonvulsants/pharmacology , Brain/drug effects , Case-Control Studies , Humans , Male , Nitriles , Organ Specificity , Pyridones/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Xenopus
13.
CNS Neurol Disord Drug Targets ; 12(5): 554-66, 2013 Aug.
Article En | MEDLINE | ID: mdl-23574174

An assay to detect the on-target effects of mGlu2/3 receptor antagonists in vivo would be valuable in guiding dosing regimens for the exploration of biological effects of potential therapeutic import. Multiple approaches involving blockade of mGlu2/3 receptor agoinist-driven behavioral effects in mice and rats were investigated. Most of these methods failed to provide a useful method of detection of antagonists in vivo (e.g., locomotor activity). In contrast, the mGlu2/3 receptor agonist LY379268 produced dose-dependent increases in body temperature of mice. The hyperthermic effects of LY379268 was abolished in mGlu2 and in mGlu2/3 receptor null mice but not in mGlu3 null mice. Hyperthermia was not produced by an mGlu8 receptor agonist. Agonist-induced hyperthermia was prevented in a dose-dependent manner by structurally-distinct mGlu2/3 receptor antagonists. The blockade was stereo-specific. Moreover, this biological readout was responsive to both orthosteric and to negative allosteric modulators of mGlu2/3 receptors. Antagonism of agonist-induced hyperthermia predicted antidepressant-like efficacy in the mouse forced swim test. As with the hyperthermic response, the antidepressant-like effects of mGlu2/3 receptor antagonists were shown to be due to mGlu2 and not to mGlu3 or mGlu8 receptors through the use of receptor knock-out mice. The ability to rapidly assess on-target activity of mGlu2/3 receptor antagonists enables determination of parameters for setting efficacy doses in vivo. In turn, efficacy-related data in the preclinical laboratory can help to set expectations of therapeutic potential and dosing in humans.


Antidepressive Agents/therapeutic use , Depression/drug therapy , Drug Evaluation, Preclinical , Excitatory Amino Acid Agents/therapeutic use , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Analysis of Variance , Animals , Conditioning, Operant/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Agents/chemistry , Excitatory Amino Acid Agents/pharmacology , Exploratory Behavior/drug effects , In Vitro Techniques , Male , Mice , Mice, Knockout , Movement/drug effects , Rats , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/deficiency
14.
J Pharmacol Exp Ther ; 344(2): 501-10, 2013 Feb.
Article En | MEDLINE | ID: mdl-23197772

Dopamine D(3) receptors have eluded definitive linkage to neurologic and psychiatric disorders since their cloning over 20 years ago. We report a new method that does not employ a radiolabel for simultaneously defining in vivo receptor occupancy of D(3) and D(2) receptors in rat brain after systemic dosing using the tracer epidepride (N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2,3-dimethoxybenzamide). Decreases in epidepride binding in lobule 9 of cerebellum (rich in D(3) receptors) were compared with nonspecific binding in the lateral cerebellum. The in vivo occupancy of the dopamine D(3) receptors was dose dependently increased by SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide) and U99194 (2,3-dihydro-5,6-dimethoxy- N,N-dipropyl-1H-inden-2-amine). Both antagonists increased extracellular levels of acetylcholine (ACh) in the medial prefrontal cortex of rats and modified brain-tissue levels of ACh and choline. Consistent with these findings, the D(3) receptor antagonists enhanced the acquisition of learning of rats either alone or in the presence of the norepinephrine uptake blocker reboxetine as with the attention-deficit-hyperactivity disorder (ADHD) drug methylphenidate. Like reboxetine, the D(3) receptor antagonists also prevented deficits induced by scopolamine in object recognition memory of rats. Mice in which the dopamine transporter (DAT) has been deleted exhibit hyperactivity that is normalized by compounds that are effective in the treatment of ADHD. Both D(3) receptor antagonists decreased the hyperactivity of DAT(-/-) mice without affecting the activity of wild type controls. The present findings indicate that dopamine D(3) receptor antagonists engender cognition-enhancing and hyperactivity-dampening effects. Thus, D(3) receptor blockade could be considered as a novel treatment approach for cognitive deficits and hyperactivity syndromes, including those observed in ADHD.


Attention Deficit Disorder with Hyperactivity/drug therapy , Behavior, Animal/drug effects , Brain Chemistry/drug effects , Brain/drug effects , Dopamine Antagonists/pharmacology , Receptors, Dopamine D3/antagonists & inhibitors , Animals , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/metabolism , Dopamine Antagonists/chemistry , Dopamine Antagonists/pharmacokinetics , Dopamine Antagonists/therapeutic use , Dopamine D2 Receptor Antagonists , Indans/chemistry , Indans/pharmacokinetics , Indans/pharmacology , Indans/therapeutic use , Male , Microdialysis , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacokinetics , Nitriles/pharmacology , Nitriles/therapeutic use , Pattern Recognition, Visual/drug effects , Protein Binding , Rats , Rats, Sprague-Dawley , Rats, Wistar , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacokinetics , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/therapeutic use
15.
Proc Natl Acad Sci U S A ; 105(31): 10978-83, 2008 Aug 05.
Article En | MEDLINE | ID: mdl-18678919

Current antipsychotics provide symptomatic relief for patients suffering from schizophrenia and related psychoses; however, their effectiveness is variable and many patients discontinue treatment due to side effects. Although the etiology of schizophrenia is still unclear, a leading hypothesis implicates an imbalanced dopaminergic system. Muscarinic acetylcholine (ACh) receptors regulate dopamine levels in key areas of the brain involved in psychosis, with the M(4) subtype emerging as a key regulator of dopaminergic hyperactivity. Unfortunately, no selective small molecule tools exist to provide pharmacological validation of this hypothesis. Here, we describe the discovery of a small molecule modulator, LY2033298, that is highly selective for human M(4) receptors by virtue of targeting an allosteric site on this receptor. Pharmacological assays confirmed the selectivity of LY2033298 for the M(4) receptor and revealed the highest degree of positive allosteric enhancement of ACh potency thus far identified. Radioligand binding assays also show this compound to directly potentiate agonist binding while having minimal effects on antagonist binding. Mutational analysis identified a key amino acid (D(432)) in the third extracellular loop of the human M(4) receptor to be critical for selectivity and agonist potentiation by LY2033298. Importantly, LY2033298 was active in animal models predictive of clinical antipsychotic drug efficacy indicating its potential use as a first-in-class, selective, allosteric muscarinic antipsychotic agent.


Antipsychotic Agents/pharmacology , Receptor, Muscarinic M4/metabolism , Schizophrenia/drug therapy , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Antipsychotic Agents/therapeutic use , Cell Line , DNA Mutational Analysis , Humans , Nicotinic Acids/pharmacology , Radioligand Assay , Receptor, Muscarinic M4/genetics , Signal Transduction/drug effects , Small Molecule Libraries
16.
J Pharmacol Exp Ther ; 326(3): 930-8, 2008 Sep.
Article En | MEDLINE | ID: mdl-18566292

Previous findings have demonstrated a protective role for dopamine D(3)/D(2) receptor agonists in the convulsant and lethal effects of acutely administered cocaine. Data are provided here to establish that the protection occurs through a D(3)-linked mechanism and that protection is extended to seizure kindling. The D(3) antagonist SB-277011-A [4-quinolinecarboxamide,N-[trans-4-[2-(6-cyano-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]-cyclohexyl]-(9CI)] prevented the anticonvulsant effect of the D(3)/D(2) receptor agonist (+)-PD-128,907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] on cocaine-induced seizures. The protection afforded by the D(3)/D(2) agonist, (+)-PD-128,907, was eliminated in D(3) receptor-deficient mice. In D(2) receptor knockout mice, the anticonvulsant effects of (+)-PD-128,907 were preserved. (+)-PD-128,907 also prevented the acquisition and expression of cocaine-kindled seizures engendered by repeated daily dosing with 60 mg/kg cocaine. (+)-PD-128,907 also blocked the seizures induced in mice fully seizure kindled to cocaine. Although repeated dosing with cocaine increased the potency of cocaine to produce seizures and lethality (decreased ED(50) values), daily coadministration of (+)-PD-128,907 significantly prevented this potency shift. In mice treated daily with cocaine and (+)-PD-128,907, the density, but not the affinity, of D(3) receptors was increased. The specificity with which (+)-PD-128,907 acts upon this cocaine-driven process was demonstrated by the lack of a significant effect of (+)-PD-128,907 on seizure kindling to a GABA(A) receptor antagonist, pentylenetetrazol. Taken together and with literature findings, the data indicate that dopamine D(3) receptors function in the initiation of a dampening mechanism against the toxic effects of cocaine, a finding that might have relevance to psychiatric disorders of drug dependence, schizophrenia, and bipolar depression.


Benzopyrans/pharmacology , Cocaine/toxicity , Oxazines/pharmacology , Receptors, Dopamine D2/agonists , Receptors, Dopamine D3/agonists , Seizures/prevention & control , Animals , Benzopyrans/therapeutic use , Dopamine/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxazines/therapeutic use , Protein Binding/drug effects , Protein Binding/physiology , Receptors, Dopamine D2/physiology , Receptors, Dopamine D3/physiology , Seizures/chemically induced , Seizures/physiopathology
17.
CNS Neurol Disord Drug Targets ; 6(2): 117-26, 2007 Apr.
Article En | MEDLINE | ID: mdl-17430149

There is an increasing body of evidence implicating a role for alpha-amino-3-hydroxy-5-methyl-4 isoxazoleproprionic acid (AMPA) receptors in major depression and in the actions of antidepressant drugs. Alterations in AMPA receptors and other ionotropic glutamate receptors have been reported in depression, and following antidepressant treatment. Compounds which augment signaling through AMPA receptors (AMPA receptor potentiators) exhibit antidepressant-like behavioral effects in animal models, and produce neuronal effects similar to those produced by currently available antidepressants, including neurotrophin induction and increases in hippocampal progenitor cell proliferation. Additionally, the antidepressant fluoxetine has been found to alter AMPA receptor phosphorylation in a manner that is expected to increase AMPA receptor signaling. Data from mutant mice suggest that AMPA receptors may regulate the expression of brain-derived neurotrophic factor, a neurotrophin which has been implicated in the actions of antidepressant therapies. Combined, these data suggest that AMPA receptors may be in a key position to regulate mood disorders, and that compounds which target AMPA receptors may prove useful in the clinical management of depression.


Antidepressive Agents/pharmacology , Depressive Disorder/drug therapy , Receptors, AMPA/drug effects , Animals , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/biosynthesis , Cell Division/drug effects , Humans , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/drug effects , Receptors, AMPA/agonists , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/metabolism , Receptors, AMPA/physiology
18.
Mol Psychiatry ; 11(2): 187-95, 2006 Feb.
Article En | MEDLINE | ID: mdl-16231039

Atomoxetine has been approved by the FDA as the first new drug in 30 years for the treatment of attention deficit/hyperactivity disorder (ADHD). As a selective norepinephrine uptake inhibitor and a nonstimulant, atomoxetine has a different mechanism of action from the stimulant drugs used up to now for the treatment of ADHD. Since brain acetylcholine (ACh) has been associated with memory, attention and motivation, processes dysregulated in ADHD, we investigated the effects of atomoxetine on cholinergic neurotransmission. We showed here that, in rats, atomoxetine (0.3-3 mg/kg, i.p.),--increases in vivo extracellular levels of ACh in cortical but not subcortical brain regions. The marked increase of cortical ACh induced by atomoxetine was dependent upon norepinephrine alpha-1 and/or dopamine D1 receptor activation. We observed similar increases in cortical and hippocampal ACh release with methylphenidate (1 and 3 mg/kg, i.p.)--currently the most commonly prescribed medication for the treatment of ADHD--and with the norepinephrine uptake inhibitor reboxetine (3-30 mg/kg, i.p.). Since drugs that increase cholinergic neurotransmission are used in the treatment of cognitive dysfunction and dementias, we also investigated the effects of atomoxetine on memory tasks. We showed that, consistent with its cortical procholinergic and catecholamine-enhancing profile, atomoxetine (1-3 mg/kg, p.o.) significantly ameliorated performance in the object recognition test and the radial arm-maze test.


Adrenergic Uptake Inhibitors/pharmacology , Cholinergic Fibers/drug effects , Maze Learning/drug effects , Pattern Recognition, Visual/drug effects , Propylamines/pharmacology , Acetylcholine/metabolism , Animals , Atomoxetine Hydrochloride , Central Nervous System Stimulants/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cholinergic Fibers/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Methylphenidate/pharmacology , Microdialysis , Morpholines/pharmacology , Norepinephrine/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reboxetine , Receptors, Dopamine/drug effects , Receptors, Dopamine/metabolism
19.
Behav Pharmacol ; 16(5-6): 315-31, 2005 Sep.
Article En | MEDLINE | ID: mdl-16148437

Mood and anxiety disorders, the most prevalent of the psychiatric disorders, cause immeasurable suffering worldwide. Despite impressive advances in pharmacological therapies, improvements in efficacy and side-effect profiles are needed. The present literature review examines the role that the endocannabinoid system may play in these disorders and the potential value of targeting this system in the search for novel and improved medications. Cannabis and its major psychoactive component (-)-trans-delta9-tetrahydrocannabinol, have profound effects on mood and can modulate anxiety and mood states. Cannabinoid receptors and other protein targets in the central nervous system (CNS) that modulate endocannabinoid function have been described. The discovery of selective modulators of some of these sites that increase or decrease endocannabinoid neurotransmission, primarily through the most prominent of the cannabinoid receptors in the CNS, the CB1 receptors, combined with transgenic mouse technology, has enabled detailed investigations into the role of these CNS sites in the regulation of mood and anxiety states. Although data point to the involvement of the endocannabinoid system in anxiety states, the pharmacological evidence seems contradictory: both anxiolytic- and anxiogenic-like effects have been reported with both endocannabinoid neurotransmission enhancers and blockers. Due to advances in the development of selective compounds directed at the CB1 receptors, significant progress has been made on this target. Recent biochemical and behavioural findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioural effects consistent with antidepressant/antistress activity in rodents.


Affect/physiology , Anxiety Disorders/physiopathology , Receptor, Cannabinoid, CB1/physiology , Affect/drug effects , Animals , Anxiety Disorders/prevention & control , Cannabinoid Receptor Modulators/physiology , Dronabinol/pharmacology , Humans , Models, Animal , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors
20.
Curr Pharm Des ; 11(12): 1511-27, 2005.
Article En | MEDLINE | ID: mdl-15892659

Depression affects a large percentage of the general population and can produce devastating consequences to affected individuals, families and society. Although the treatment of depression has been advanced by traditional antidepressants, improvements are needed across several dimensions (e.g., overall treatment efficacy, therapeutic onset time, and side effect profile). The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor has an allosteric modulatory site(s) for which potent positive modulators (potentiators) have been designed. These compounds produce antidepressant-like effects in animal models, increase levels of brain-derived neurotrophic factor (BDNF) and engender neurogenesis in vivo. Although these effects are also produced by traditional antidepressants, AMPA receptor potentiators appear to produce their effects through a novel mechanism.


Antidepressive Agents/pharmacology , Receptors, AMPA/drug effects , Allosteric Regulation , Animals , Brain-Derived Neurotrophic Factor/genetics , Gene Expression Regulation , Humans , Nervous System/drug effects , Neuroprotective Agents , Receptors, AMPA/physiology , Stress, Psychological/physiopathology
...