Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38546293

RESUMEN

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

2.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37236171

RESUMEN

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

3.
ACS Appl Mater Interfaces ; 13(49): 59450-59459, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34855346

RESUMEN

CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...