Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 209
1.
Transl Psychiatry ; 14(1): 235, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830892

There is a lack of knowledge regarding the relationship between proneness to dimensional psychopathological syndromes and the underlying pathogenesis across major psychiatric disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizoaffective Disorder (SZA), and Schizophrenia (SZ). Lifetime psychopathology was assessed using the OPerational CRITeria (OPCRIT) system in 1,038 patients meeting DSM-IV-TR criteria for MDD, BD, SZ, or SZA. The cohort was split into two samples for exploratory and confirmatory factor analyses. All patients were scanned with 3-T MRI, and data was analyzed with the CAT-12 toolbox in SPM12. Psychopathological factor scores were correlated with gray matter volume (GMV) and cortical thickness (CT). Finally, factor scores were used for exploratory genetic analyses including genome-wide association studies (GWAS) and polygenic risk score (PRS) association analyses. Three factors (paranoid-hallucinatory syndrome, PHS; mania, MA; depression, DEP) were identified and cross-validated. PHS was negatively correlated with four GMV clusters comprising parts of the hippocampus, amygdala, angular, middle occipital, and middle frontal gyri. PHS was also negatively associated with the bilateral superior temporal, left parietal operculum, and right angular gyrus CT. No significant brain correlates were observed for the two other psychopathological factors. We identified genome-wide significant associations for MA and DEP. PRS for MDD and SZ showed a positive effect on PHS, while PRS for BD showed a positive effect on all three factors. This study investigated the relationship of lifetime psychopathological factors and brain morphometric and genetic markers. Results highlight the need for dimensional approaches, overcoming the limitations of the current psychiatric nosology.


Bipolar Disorder , Depressive Disorder, Major , Genome-Wide Association Study , Gray Matter , Magnetic Resonance Imaging , Psychotic Disorders , Schizophrenia , Humans , Male , Female , Adult , Bipolar Disorder/genetics , Bipolar Disorder/pathology , Bipolar Disorder/diagnostic imaging , Depressive Disorder, Major/genetics , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Schizophrenia/genetics , Schizophrenia/pathology , Schizophrenia/diagnostic imaging , Psychotic Disorders/genetics , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Middle Aged , Factor Analysis, Statistical , Brain/pathology , Brain/diagnostic imaging , Psychopathology , Multifactorial Inheritance/genetics , Cerebral Cortex/pathology , Cerebral Cortex/diagnostic imaging
2.
Aging Cell ; : e14194, 2024 May 29.
Article En | MEDLINE | ID: mdl-38808605

Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.

3.
Mol Psychiatry ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38693319

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

4.
Psychoneuroendocrinology ; 165: 107035, 2024 Jul.
Article En | MEDLINE | ID: mdl-38603892

INTRODUCTION: Adverse environments during pregnancy impact neurodevelopment including cognitive abilities of the developing children. The mediating biological alterations are not fully understood. Maternal stress may impact the neurotrophic regulation of the offspring as early as in utero and at birth. Brain-derived neurotrophic factor (BDNF) is essential for neurodevelopment. Short-term higher levels of BDNF in mice upon stressors associate with lower BDNF later in life, which itself associates with depression in animals and humans. Stress including glucocorticoids may impact BDNF, but there is a lack of data at birth. This study investigated if stress near term associates with fetal BDNF at birth in humans. METHODS: Pregnant women near term who underwent primary cesarean sections (at 38.80±0.64 weeks), were included in this study (n=41). Stress at the end of pregnancy was assessed before the cesarean section by determining maternal depressive symptoms (EDPS), maternal state and trait anxiety (STAI-S and STAI-T), maternal prenatal distress (PDQ), stress over the past month (PSS), prenatal attachment to the offspring (PAI), maternal social support (F-Sozu), maternal early life stress (CTQ), socioeconomic status, and the glucocorticoids cortisol and cortisone (n=40) in amniotic fluid at birth. The association with fetal BDNF was analyzed. Cord blood serum of n=34 newborns at birth was analyzed for BDNF and newborn anthropometrics (weight, length and head circumference per gestational age at birth) were assessed. The association of fetal BDNF with anthropometrics at birth was analyzed. RESULTS: After a BDNF-outlier (>3 SD) was removed, higher fetal BDNF associated significantly with maternal depressive symptoms (r=0.398, p=0.022), with lower socioeconomic status as assessed by the average number of people per room in the household (r=0.526, p=0.002) and with borderline significance with net income per person in the household (r=-0.313, p=0.087) in the bivariate analyses. In multivariable analysis, BDNF stayed positively associated with maternal depressive symptoms (ß=0.404, 95% CI [7.057, 306.041], p=0.041) and lower net income per person in the household (ß=-0.562, 95% CI [-914.511, -60.523], p=0.027) when controlling for maternal age, maternal pre-pregnancy BMI, fetal sex and gestational age. Fetal BDNF did not associate with newborn anthropometrics with the outlier removed in bivariate analyses or in multivariable analyses when controlling for maternal BMI and fetal sex. CONCLUSION: Maternal depressive symptoms and lower socioeconomic status associated with higher fetal BDNF when controlling for confounders. Fetal BDNF did not associate with newborn anthropometrics with the outlier removed. Further studies should investigate how early altered BDNF associate with the development and possibly psychopathology of the offspring.


Brain-Derived Neurotrophic Factor , Depression , Fetal Blood , Stress, Psychological , Humans , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , Female , Pregnancy , Fetal Blood/chemistry , Fetal Blood/metabolism , Adult , Stress, Psychological/metabolism , Stress, Psychological/blood , Infant, Newborn , Depression/blood , Depression/metabolism , Pregnancy Complications/blood , Hydrocortisone/blood , Male , Anxiety/metabolism , Anxiety/blood , Cesarean Section/statistics & numerical data , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/blood
5.
Int J Tryptophan Res ; 17: 11786469241244603, 2024.
Article En | MEDLINE | ID: mdl-38660592

Traumatic experiences and fetal development influence tryptophan (TRP) and its neuroactive byproduct, kynurenic acid (KYNA). Maternal TRP metabolite levels during pregnancy vary by fetal sex, with higher concentrations in mothers carrying male fetuses. This pilot study aimed to explore the relationship between offspring sex, maternal childhood trauma, and maternal salivary KYNA and TRP levels during pregnancy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine KYNA and TRP levels in maternal saliva samples collected from 35 late-pregnancy participants. Maternal childhood trauma was assessed using the Childhood Trauma Questionnaire, including subscales for emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical neglect. Among mothers pregnant with boys, salivary KYNA significantly correlated with physical and emotional neglect, and salivary TRP with emotional neglect. No significant correlations were found in mothers who delivered female offspring. Significant associations of childhood trauma and offspring sex were found for salivary KYNA but not TRP concentrations. Mothers with higher trauma levels who delivered boys exhibited higher levels of salivary KYNA compared to those with lower trauma levels. Moreover, mothers with higher trauma levels who delivered boys had higher salivary KYNA levels than those with higher trauma levels who delivered girls. This pilot study provides evidence of an association between maternal childhood trauma and TRP metabolism, measured in saliva, especially in mothers pregnant with boys. However, longitudinal studies with larger sample sizes are required to confirm these results.

6.
Front Genet ; 15: 1345410, 2024.
Article En | MEDLINE | ID: mdl-38633406

Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.

7.
Biol Psychiatry ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38460581

BACKGROUND: Understanding the biological processes that underlie individual differences in emotion regulation and stress responsivity is a key challenge for translational neuroscience. The gene FKBP5 is a core regulator in molecular stress signaling that is implicated in the development of psychiatric disorders. However, it remains unclear how FKBP5 DNA methylation in peripheral blood is related to individual differences in measures of neural structure and function and their relevance to daily-life stress responsivity. METHODS: Here, we characterized multimodal correlates of FKBP5 DNA methylation by combining epigenetic data with neuroimaging and ambulatory assessment in a sample of 395 healthy individuals. RESULTS: First, we showed that FKBP5 demethylation as a psychiatric risk factor was related to an anxiety-associated reduction of gray matter volume in the ventromedial prefrontal cortex, a brain area that is involved in emotion regulation and mental health risk and resilience. This effect of epigenetic upregulation of FKBP5 on neuronal structure is more pronounced where FKBP5 is epigenetically downregulated at baseline. Leveraging 208 functional magnetic resonance imaging scans during a well-established emotion-processing task, we found that FKBP5 DNA methylation in peripheral blood was associated with functional differences in prefrontal-limbic circuits that modulate affective responsivity to daily stressors, which we measured using ecological momentary assessment in daily life. CONCLUSIONS: Overall, we demonstrated how FKBP5 contributes to interindividual differences in neural and real-life affect regulation via structural and functional changes in prefrontal-limbic brain circuits.

8.
medRxiv ; 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38410442

Background: Accurate diagnosis of bipolar disorder (BD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A key reason is that the first manic episode is often preceded by a depressive one, making it difficult to distinguish BD from unipolar major depressive disorder (MDD). Aims: Here, we use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores that may aid early differential diagnosis. Methods: Based on individual genotypes from case-control cohorts of BD and MDD shared through the Psychiatric Genomics Consortium, we compile case-case-control cohorts, applying a careful merging and quality control procedure. In a resulting cohort of 51,149 individuals (15,532 BD cases, 12,920 MDD cases and 22,697 controls), we perform a variety of GWAS and polygenic risk scores (PRS) analyses. Results: While our GWAS is not well-powered to identify genome-wide significant loci, we find significant SNP-heritability and demonstrate the ability of the resulting PRS to distinguish BD from MDD, including BD cases with depressive onset. We replicate our PRS findings, but not signals of individual loci in an independent Danish cohort (iPSYCH 2015 case-cohort study, N=25,966). We observe strong genetic correlation between our case-case GWAS and that of case-control BD. Conclusions: We find that MDD and BD, including BD with a depressive onset, are genetically distinct. Further, our findings support the hypothesis that Controls - MDD - BD primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BD and, importantly, BD with depressive onset from MDD.

9.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332015

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Bipolar Disorder , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Gray Matter/diagnostic imaging , Brain , White Matter/diagnostic imaging , Cerebral Cortex , Anisotropy
10.
JMIR Ment Health ; 11: e49222, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236637

BACKGROUND: The use of mobile devices to continuously monitor objectively extracted parameters of depressive symptomatology is seen as an important step in the understanding and prevention of upcoming depressive episodes. Speech features such as pitch variability, speech pauses, and speech rate are promising indicators, but empirical evidence is limited, given the variability of study designs. OBJECTIVE: Previous research studies have found different speech patterns when comparing single speech recordings between patients and healthy controls, but only a few studies have used repeated assessments to compare depressive and nondepressive episodes within the same patient. To our knowledge, no study has used a series of measurements within patients with depression (eg, intensive longitudinal data) to model the dynamic ebb and flow of subjectively reported depression and concomitant speech samples. However, such data are indispensable for detecting and ultimately preventing upcoming episodes. METHODS: In this study, we captured voice samples and momentary affect ratings over the course of 3 weeks in a sample of patients (N=30) with an acute depressive episode receiving stationary care. Patients underwent sleep deprivation therapy, a chronotherapeutic intervention that can rapidly improve depression symptomatology. We hypothesized that within-person variability in depressive and affective momentary states would be reflected in the following 3 speech features: pitch variability, speech pauses, and speech rate. We parametrized them using the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) from open-source Speech and Music Interpretation by Large-Space Extraction (openSMILE; audEERING GmbH) and extracted them from a transcript. We analyzed the speech features along with self-reported momentary affect ratings, using multilevel linear regression analysis. We analyzed an average of 32 (SD 19.83) assessments per patient. RESULTS: Analyses revealed that pitch variability, speech pauses, and speech rate were associated with depression severity, positive affect, valence, and energetic arousal; furthermore, speech pauses and speech rate were associated with negative affect, and speech pauses were additionally associated with calmness. Specifically, pitch variability was negatively associated with improved momentary states (ie, lower pitch variability was linked to lower depression severity as well as higher positive affect, valence, and energetic arousal). Speech pauses were negatively associated with improved momentary states, whereas speech rate was positively associated with improved momentary states. CONCLUSIONS: Pitch variability, speech pauses, and speech rate are promising features for the development of clinical prediction technologies to improve patient care as well as timely diagnosis and monitoring of treatment response. Our research is a step forward on the path to developing an automated depression monitoring system, facilitating individually tailored treatments and increased patient empowerment.


Depressive Disorder , Speech , Humans , Pilot Projects , Depression/therapy , Sleep Deprivation
11.
Alcohol Clin Exp Res (Hoboken) ; 48(2): 250-259, 2024 Feb.
Article En | MEDLINE | ID: mdl-38276909

BACKGROUND: Alcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken. METHODS: As markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates. RESULTS: The majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain. CONCLUSIONS: The present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.

12.
Commun Biol ; 7(1): 66, 2024 01 09.
Article En | MEDLINE | ID: mdl-38195839

Higher birth order is associated with altered risk of many disease states. Changes in placentation and exposures to in utero growth factors with successive pregnancies may impact later life disease risk via persistent DNA methylation alterations. We investigated birth order with Illumina DNA methylation array data in each of 16 birth cohorts (8164 newborns) with European, African, and Latino ancestries from the Pregnancy and Childhood Epigenetics Consortium. Meta-analyzed data demonstrated systematic DNA methylation variation in 341 CpGs (FDR adjusted P < 0.05) and 1107 regions. Forty CpGs were located within known quantitative trait loci for gene expression traits in blood, and trait enrichment analysis suggested a strong association with immune-related, transcriptional control, and blood pressure regulation phenotypes. Decreasing fertility rates worldwide with the concomitant increased proportion of first-born children highlights a potential reflection of birth order-related epigenomic states on changing disease incidence trends.


Birth Order , DNA Methylation , Child , Female , Humans , Infant, Newborn , Pregnancy , Epigenesis, Genetic , Epigenomics
13.
Brain Behav ; 14(2): e3337, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38111335

OBJECTIVES: Bipolar disorder (BD) and major depressive disorder (MDD) are characterized by specific alterations of mood. In both disorders, alterations in cognitive domains such as impulsivity, decision-making, and risk-taking have been reported. Identification of similarities and differences of these domains in BD and MDD could give further insight into their etiology. The present study assessed impulsivity, decision-making, and risk-taking behavior in BD and MDD patients from bipolar multiplex families. METHODS: Eighty-two participants (BD type I, n = 25; MDD, n = 26; healthy relatives (HR), n = 17; and healthy controls (HC), n = 14) underwent diagnostic interviews and selected tests of a cognitive battery assessing neurocognitive performance across multiple subdomains including impulsivity (response inhibition and delay aversion), decision-making, and risk behavior. Generalized estimating equations (GEEs) were used to analyze whether the groups differed in the respective cognitive domains. RESULTS: Participants with BD and MDD showed higher impulsivity levels compared to HC; this difference was more pronounced in BD participants. BD participants also showed lower inhibitory control than MDD participants. Overall, suboptimal decision-making was associated with both mood disorders (BD and MDD). In risk-taking behavior, no significant impairment was found in any group. LIMITATIONS: As sample size was limited, it is possible that differences between BD and MDD may have escaped detection due to lack of statistical power. CONCLUSIONS: Our findings show that alterations of cognitive domains-while present in both disorders-are differently associated with BD and MDD. This underscores the importance of assessing such domains in addition to mere diagnosis of mood disorders.

14.
Transl Psychiatry ; 13(1): 398, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38105248

Loneliness, influenced by genetic and environmental factors such as childhood maltreatment, is one aspect of interpersonal dysfunction in Borderline Personality Disorder (BPD). Numerous studies link loneliness and BPD and twin studies indicate a genetic contribution to this association. The aim of our study was to investigate whether genetic predisposition for loneliness and BPD risk overlap and whether genetic risk for loneliness contributes to higher loneliness reported by BPD patients, using genome-wide genotype data. We assessed the genetic correlation of genome-wide association studies (GWAS) of loneliness and BPD using linkage disequilibrium score regression and tested whether a polygenic score for loneliness (loneliness-PGS) was associated with case-control status in two independent genotyped samples of BPD patients and healthy controls (HC; Witt2017-sample: 998 BPD, 1545 HC; KFO-sample: 187 BPD, 261 HC). In the KFO-sample, we examined associations of loneliness-PGS with reported loneliness, and whether the loneliness-PGS influenced the association between childhood maltreatment and loneliness. We found a genetic correlation between the GWAS of loneliness and BPD in the Witt2017-sample (rg = 0.23, p = 0.015), a positive association of loneliness-PGS with BPD case-control status (Witt2017-sample: NkR² = 2.3%, p = 2.7*10-12; KFO-sample: NkR² = 6.6%, p = 4.4*10-6), and a positive association between loneliness-PGS and loneliness across patient and control groups in the KFO-sample (ß = 0.186, p = 0.002). The loneliness-PGS did not moderate the association between childhood maltreatment and loneliness in BPD. Our study is the first to use genome-wide genotype data to show that the genetic factors underlying variation in loneliness in the general population and the risk for BPD overlap. The loneliness-PGS was associated with reported loneliness. Further research is needed to investigate which genetic mechanisms and pathways are involved in this association and whether a genetic predisposition for loneliness contributes to BPD risk.


Borderline Personality Disorder , Loneliness , Humans , Genome-Wide Association Study , Borderline Personality Disorder/genetics , Genetic Predisposition to Disease , Genotype
15.
medRxiv ; 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38105948

Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.

16.
Transl Psychiatry ; 13(1): 249, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37419878

Traumatic events may lead to post-traumatic stress disorder (PTSD), with higher prevalence in women. Adverse childhood experiences (ACE) increase PTSD risk in adulthood. Epigenetic mechanisms play important roles in PTSD pathogenesis and a mutation in the methyl-CpG binding protein 2 (MECP2) in mice provide susceptibility to PTSD-like alterations, with sex-dependent biological signatures. The present study examined whether the increased risk of PTSD associated with ACE exposure is accompanied by reduced MECP2 blood levels in humans, with an influence of sex. MECP2 mRNA levels were analyzed in the blood of 132 subjects (58 women). Participants were interviewed to assess PTSD symptomatology, and asked to retrospectively report ACE. Among trauma-exposed women, MECP2 downregulation was associated with the intensification of PTSD symptoms linked to ACE exposure. MECP2 expression emerges as a potential contributor to post-trauma pathophysiology fostering novel studies on the molecular mechanisms underlying its potential sex-dependent role in PTSD onset and progression.


Methyl-CpG-Binding Protein 2 , Stress Disorders, Post-Traumatic , Animals , Female , Humans , Mice , Epigenesis, Genetic , Retrospective Studies , Stress Disorders, Post-Traumatic/diagnosis , Adverse Childhood Experiences , Methyl-CpG-Binding Protein 2/genetics
17.
Stress ; 26(1): 2234060, 2023 11.
Article En | MEDLINE | ID: mdl-37519130

The COVID-19 pandemic severely affected the lives of families and the well-being of both parents and their children. Various factors, including prenatal stress, dysregulated stress response systems, and genetics may have influenced how the stress caused by the pandemic impacted the well-being of different family members. The present work investigated if emotional well-being during the COVID-19 pandemic could be predicted by developmental stress-related and genetic factors. Emotional well-being of 7-10 year-old children (n = 263) and mothers (n = 241) (participants in a longitudinal German birth cohort (POSEIDON)) was assessed during the COVID-19 pandemic using the CRISIS questionnaire at two time periods (July 2020-October 2020; November 2020-February 2021). Associations of the children's and mothers' well-being with maternal perceived stress, of the children's well-being with their salivary and morning urine cortisol at 45 months, and polygenic risk scores (PRSs) for depression, schizophrenia, loneliness were investigated. Lower emotional well-being was observed in both children and mothers during compared to before the pandemic, with the children's but not the mothers' emotional well-being improving over the course of the pandemic. A positive association between the child and maternal emotional well-being was found. Prenatally assessed maternal perceived stress was associated with a lower well-being in children, but not in mothers. Cortisol measures and PRSs were not significantly associated with the children's emotional well-being. The present study confirms that emotional well-being of children and mothers are linked, and were negatively affected by the COVID-19 pandemic, with differences in development over time.


COVID-19 , Emotions , Endocrine System , Mental Health , Mothers , Multifactorial Inheritance , Longitudinal Studies , Humans , Mental Health/statistics & numerical data , COVID-19/epidemiology , Endocrine System/metabolism , Male , Female , Child , Adult , Stress, Psychological/genetics , Stress, Psychological/metabolism , Genetic Predisposition to Disease , Depressive Disorder, Major/genetics , Schizophrenia/genetics , Loneliness
18.
Psychosom Med ; 85(6): 498-506, 2023.
Article En | MEDLINE | ID: mdl-37199395

OBJECTIVE: Type 2 diabetes mellitus (T2D) is a chronic disease that is influenced by different factors. The extent to which degree adverse childhood events (ACEs) can modify the potential to development of T2D is still not explored and therefore represents one of the central questions of the childhood escape-late life outcome (DRKS00012419) study. In addition, transgenerational effects were considered in the analyses. METHODS: The study analyzed the association of self-reported traumatic experiences and T2D disease of refugees from East Prussia, who were displaced from their former homeland at the end of the World War II. In addition, an independent sample consisting of participants of first-generation offspring of refugees was analyzed. RESULTS: Of the 242 refugees, all aged between 73 and 93 years, 17.36% reported T2D disease, whereas among the offspring ( n = 272), aged between 47 and 73 years, it was 5.5%, meaning reduced T2D prevalence for both generations compared with the German population of comparable age. In the refugee generation, emotional neglect showed a negative association with development of T2D in later life. In women, separation from close caregivers in childhood showed a negative association with later T2D. In contrast, experiencing emotional abuse in childhood showed a positive association with later T2D. The offspring generation showed no associations of adverse childhood events and reported T2D diagnoses in later life. CONCLUSIONS: Our results demonstrate that individual trauma in childhood is responded to with different mechanisms that can lead to both increased and decreased reported T2D diagnoses in adulthood and thus should by no means be considered in a generalized manner.


Diabetes Mellitus, Type 2 , Refugees , Humans , Female , Aged , Aged, 80 and over , Middle Aged , Diabetes Mellitus, Type 2/epidemiology , Refugees/psychology , World War II , Self Report , Prevalence
19.
Front Psychiatry ; 14: 1075250, 2023.
Article En | MEDLINE | ID: mdl-36865068

Background: Cocaine use disorder (CUD) is characterized by a loss of control over cocaine intake and is associated with structural, functional, and molecular alterations in the human brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. Methods: We investigated epigenome-wide DNA methylation (DNAm) signatures of CUD in human post-mortem brain tissue of Brodmann area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study (EWAS) and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology (GO) enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. Results: While no cytosine-phosphate-guanine (CpG) site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified Neuropeptide FF Receptor 2 (NPFFR2) and Kalirin RhoGEF Kinase (KALRN) for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction (PPI) networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN). In BA9, we observed a trend toward epigenetic age acceleration (EAA) in individuals with CUD remaining stable even after adjustment for covariates. Conclusion: Results from our study highlight that CUD is associated with epigenome-wide differences in DNAm levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex (PFC). Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.

20.
Mol Psychiatry ; 2023 Mar 10.
Article En | MEDLINE | ID: mdl-36899042

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

...