Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
EMBO J ; 41(6): e110002, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35199384

RESUMEN

The use of animals in neuroscience and biomedical research remains controversial. Policy is built around the "3R" principle of "Refining, Reducing and Replacing" animal experiments, and across the globe, different initiatives stimulate the use of animal-free methods. Based on an extensive literature screen to map the development and adoption of animal-free methods in Alzheimer's and Parkinson's disease research, we find that at least two in three examined studies rely on animals or on animal-derived models. Among the animal-free studies, the relative contribution of innovative models that may replace animal experiments is limited. We argue that the distinction between animal research and alternative models presents a false dichotomy, as the role and scientific value of both animal and animal-free approaches are intertwined. Calls to halt all animal experiments appear premature, as insufficient non-animal-based alternatives are available and their development lags behind. In light of this, we highlight the need for objective, unprejudiced monitoring, and more robust performance indicators of animal-free approaches.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Animales , Modelos Animales
2.
Regul Toxicol Pharmacol ; 127: 105054, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34653553

RESUMEN

Reproductive toxicity chemical safety assessment involves extensive use of vertebrate animals for regulatory testing purposes. Although alternative methods such as the zebrafish embryo teratogenicity assay (identified in the present manuscript by the acronym ZETA) are promising for replacing tests with mammals, challenges to regulatory application involve lack of standardization and incomplete validation. To identify key protocol aspects and ultimately support improving this situation, a comprehensive review of the literature on the level of harmonization/standardization and validation status of the ZETA has been conducted. The gaps and needed advances of the available ZETA protocols were evaluated and discussed with respect to its applicability as an alternative approach for teratogenicity assessment. Based on the review outcomes, a set of minimum reporting standards for the experimental protocol is proposed. Together with other initiatives towards implementation of alternative approaches at the screening and regulatory levels, the application of minimum reporting requirements is anticipated to support future method standardization and validation, as well as identifying potential improvement aspects. Present findings are expected to ultimately support advancing the ongoing validation initiatives towards the regulatory acceptance of the ZETA.


Asunto(s)
Documentación/normas , Embrión no Mamífero , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Pez Cebra , Animales
3.
Toxicol Sci ; 183(1): 14-35, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34109416

RESUMEN

Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.


Asunto(s)
Pruebas de Toxicidad , Pez Cebra , Animales , Femenino , Embarazo , Conejos , Ratas
4.
ALTEX ; 38(4): 550-564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33882577

RESUMEN

The goal is to optimize and show the validity of an in vitro method for inhalation testing of petroleum substances and their constituents at the air-liquid interface (ALI). The approach is demonstrated in a pilot study with ethylbenzene (EB), a mono-constituent petroleum substance, using a human alveolar epithelial cell line model. This included the development and validation of a generation facility to obtain EB vapors and the optimization of an exposure system for a negative control (clean air, CA), positive control (nitrogen dioxide), and EB vapors. The optimal settings for the VITROCELL® 24/48 system were defined. Cytotoxicity, cell viability, inflammation, and oxidative stress were assessed in A549 after exposure to EB vapors. A concentration-dependent significant decrease in mean cell viability was observed after exposure, which was confirmed by a cytotoxicity test. The oxidative stress marker superoxide dismutase 2 was sig­nificantly increased, but no concentration-response was observed. A concentration-dependent significant increase in pro-inflammatory markers C-C motif chemokine ligand 2, interleukin (IL)6, and IL8 was observed for EB-exposed A549 cells compared to CA. The data demonstrated consistency between in vivo air concentrations at which adverse respi­ratory effects were observed and ALI-concentrations affecting cell viability, provided that the actual measured in vitro delivery efficiency of the compound was considered. It can be concluded that extrapolating in vitro air concentrations (adjusted for delivery efficiency and absorption characteristics and applied for testing cell viability) to simulate in vivo air concentrations may be a promising method to screen for acute inhalation toxicity.


Asunto(s)
Petróleo , Células A549 , Línea Celular , Supervivencia Celular , Humanos , Exposición por Inhalación , Proyectos Piloto
5.
NanoImpact ; 23: 100337, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35559838

RESUMEN

The coming years are expected to bring rapid changes in the nanotechnology regulatory landscape, with the establishment of a new framework for nano-risk governance, in silico approaches for characterisation and risk assessment of nanomaterials, and novel procedures for the early identification and management of nanomaterial risks. In this context, Safe(r)-by-Design (SbD) emerges as a powerful preventive approach to support the development of safe and sustainable (SSbD) nanotechnology-based products and processes throughout the life cycle. This paper summarises the work undertaken to develop a blueprint for the deployment and operation of a permanent European Centre of collaborating laboratories and research organisations supporting safe innovation in nanotechnologies. The proposed entity, referred to as "the Centre", will establish a 'one-stop shop' for nanosafety-related services and a central contact point for addressing stakeholder questions about nanosafety. Its operation will rely on significant business, legal and market knowledge, as well as other tools developed and acquired through the EU-funded EC4SafeNano project and subsequent ongoing activities. The proposed blueprint adopts a demand-driven service update scheme to allow the necessary vigilance and flexibility to identify opportunities and adjust its activities and services in the rapidly evolving regulatory and nano risk governance landscape. The proposed Centre will play a major role as a conduit to transfer scientific knowledge between the research and commercial laboratories or consultants able to provide high quality nanosafety services, and the end-users of such services (e.g., industry, SMEs, consultancy firms, and regulatory authorities). The Centre will harmonise service provision, and bring novel risk assessment and management approaches, e.g. in silico methodologies, closer to practice, notably through SbD/SSbD, and decisively support safe and sustainable innovation of industrial production in the nanotechnology industry according to the European Chemicals Strategy for Sustainability.


Asunto(s)
Nanoestructuras , Nanotecnología , Industrias , Medición de Riesgo
6.
MethodsX ; 7: 101088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117658

RESUMEN

In vitro-based new approach methodologies (NAMs) provide a pragmatic solution to animal testing of petroleum substances and their constituents. A previous study exposed an in vitro model (A549 cells) at the air-liquid interface (ALI) to assess inhalation toxicity of a single compound, ethylbenzene. Experimental conditions using VITROCELLⓇ 24/48 exposure system were optimized to achieve a deposition efficiency that resulted in dose-dependent biological changes. The feasibility of this set-up was evaluated for testing the complex substance gasoline, which, at only high concentrations, can induce mild respiratory irritation in animals and cough in humans.•Results showed that perpendicular ALI exposure flow systems (VITROCELL® 6/4 and 24/48) may not be appropriate for testing gasoline because it was not possible to achieve enough deposition onto the cells and in the culture medium to measure dose and to determine dose-dependent biological changes (more information can be found in 'Supplementary material and/or Additional information' section).•Structural features (e.g. aromatic or saturated hydrocarbon structure) and high hydrophobicity, together with the low concentrations of individual components in gasoline, may have caused the low deposition.•To achieve a higher deposition on the cells, A549 cells were exposed to gasoline at the ALI by passive dosing.The results demonstrate that the presented methodology is a promising NAM for inhalation toxicity testing of (semi-)volatile complex substances with low aqueous solubility.

8.
Arch Environ Contam Toxicol ; 77(3): 390-408, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31422435

RESUMEN

One of the direct causes of biodiversity loss is environmental pollution resulting from the use of chemicals. Different kinds of chemicals, such as persistent organic pollutants and some heavy metals, can be endocrine disruptors, which act at low doses over a long period of time and have a negative effect on the reproductive and thyroid system in vertebrates worldwide. Research on the effects of endocrine disruptors and the use of bioindicators in neotropical ecosystems where pressure on biodiversity is high is scarce. In Chile, although endocrine disruptors have been detected at different concentrations in the environments of some ecosystems, few studies have been performed on their biological effects in the field. In this work, Xenopus laevis (African clawed frog), an introduced species, is used as a bioindicator for the presence of endocrine disruptors in aquatic systems with different degrees of contamination in a Mediterranean zone in central Chile. For the first time for Chile, alterations are described that can be linked to exposure to endocrine disruptors, such as vitellogenin induction, decreased testosterone in male frogs, and histological changes in gonads. Dioxin-like and oestrogenic activity was detected in sediments at locations where it seem to be related to alterations found in the frogs. In addition, an analysis of land use/cover use revealed that urban soil was the best model to explain the variations in frog health indicators. This study points to the usefulness of an invasive species as a bioindicator for the presence of endocrine-disruptive chemicals.


Asunto(s)
Disruptores Endocrinos/toxicidad , Biomarcadores Ambientales , Exposición a Riesgos Ambientales/análisis , Contaminación Ambiental/efectos adversos , Xenopus laevis/fisiología , Animales , Línea Celular Tumoral , Chile , Ecosistema , Ecotoxicología/métodos , Disruptores Endocrinos/análisis , Contaminantes Ambientales/toxicidad , Femenino , Sedimentos Geológicos/análisis , Gónadas/patología , Humanos , Especies Introducidas , Masculino , Reproducción , Testosterona/metabolismo , Vitelogeninas/metabolismo
9.
ALTEX ; 36(3): 506, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329255

RESUMEN

In this manuscript, which appeared in ALTEX 35 , 306-352 ( doi:10.14573/altex.1712081 ), the Acknowledgements should read: This work was supported by the Doerenkamp-Zbinden Foundation, EFSA, the BMBF, JPI-NutriCog-Selenius, and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

10.
Toxicol Sci ; 171(1): 56-68, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31192353

RESUMEN

Systematic review methodology is a means of addressing specific questions through structured, consistent, and transparent examinations of the relevant scientific evidence. This methodology has been used to advantage in clinical medicine, and is being adapted for use in other disciplines. Although some applications to toxicology have been explored, especially for hazard identification, the present preparatory study is, to our knowledge, the first attempt to adapt it to the assessment of toxicological test methods. As our test case, we chose the zebrafish embryotoxicity test (ZET) for developmental toxicity and its mammalian counterpart, the standard mammalian prenatal development toxicity study, focusing the review on how well the ZET predicts the presence or absence of chemical-induced prenatal developmental toxicity observed in mammalian studies. An interdisciplinary team prepared a systematic review protocol and adjusted it throughout this piloting phase, where needed. The final protocol was registered and will guide the main study (systematic review), which will execute the protocol to comprehensively answer the review question. The goal of this preparatory study was to translate systematic review methodology to the assessment of toxicological test method performance. Consequently, it focused on the methodological issues encountered, whereas the main study will report substantive findings. These relate to numerous systematic review steps, but primarily to searching and selecting the evidence. Applying the lessons learned to these challenges can improve not only our main study, but may also be helpful to others seeking to use systematic review methodology to compare toxicological test methods. We conclude with a series of recommendations that, if adopted, would help improve the quality of the published literature, and make conducting systematic reviews of toxicological studies faster and easier over time.

11.
Toxicol Sci ; 169(2): 353-364, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825313

RESUMEN

Predicting fish acute toxicity of chemicals in vitro is an attractive alternative method to the conventional approach using juvenile and adult fish. The rainbow trout (Oncorhynchus mykiss) cell line assay with RTgill-W1 cells has been designed for this purpose. It quantifies cell viability using fluorescent measurements for metabolic activity, cell- and lysosomal-membrane integrity on the same set of cells. Results from over 70 organic chemicals attest to the high predictive capacity of this test. We here report on the repeatability (intralaboratory variability) and reproducibility (interlaboratory variability) of the RTgill-W1 cell line assay in a round-robin study focusing on 6 test chemicals involving 6 laboratories from the industrial and academic sector. All participating laboratories were able to establish the assay according to preset quality criteria even though, apart from the lead laboratory, none had previously worked with the RTgill-W1 cell line. Concentration-response modeling, based on either nominal or geometric mean-derived measured concentrations, yielded effect concentrations (EC50) that spanned approximately 4 orders of magnitude over the chemical range, covering all fish acute toxicity categories. Coefficients of variation for intralaboratory and interlaboratory variability for the average of the 3 fluorescent cell viability measurements were 15.5% and 30.8%, respectively, which is comparable to other fish-derived, small-scale bioassays. This study therefore underlines the robustness of the RTgill-W1 cell line assay and its accurate performance when carried out by operators in different laboratory settings.


Asunto(s)
Pruebas de Toxicidad Aguda/métodos , Compuestos de Anilina/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Laboratorios , Oncorhynchus mykiss , Reproducibilidad de los Resultados
12.
Aquat Toxicol ; 200: 1-12, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29702435

RESUMEN

The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Hormonas Tiroideas/metabolismo , Pruebas de Toxicidad/métodos , Pez Cebra/fisiología , Sacos Aéreos/efectos de los fármacos , Animales , Embrión no Mamífero/enzimología , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Yoduro Peroxidasa/antagonistas & inhibidores , Yoduro Peroxidasa/metabolismo , Hígado/enzimología , Porcinos , Tiroxina/química , Tiroxina/metabolismo , Triyodotironina/química , Triyodotironina/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/crecimiento & desarrollo
13.
Toxicol Appl Pharmacol ; 354: 3-6, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29447839

RESUMEN

This consensus statement voices the agreement of scientific stakeholders from regulatory agencies, academia and industry that a new framework needs adopting for assessment of chemicals with the potential to disrupt brain development. An increased prevalence of neurodevelopmental disorders in children has been observed that cannot solely be explained by genetics and recently pre- and postnatal exposure to environmental chemicals has been suspected as a causal factor. There is only very limited information on neurodevelopmental toxicity, leaving thousands of chemicals, that are present in the environment, with high uncertainty concerning their developmental neurotoxicity (DNT) potential. Closing this data gap with the current test guideline approach is not feasible, because the in vivo bioassays are far too resource-intensive concerning time, money and number of animals. A variety of in vitro methods are now available, that have the potential to close this data gap by permitting mode-of-action-based DNT testing employing human stem cells-derived neuronal/glial models. In vitro DNT data together with in silico approaches will in the future allow development of predictive models for DNT effects. The ultimate application goals of these new approach methods for DNT testing are their usage for different regulatory purposes.


Asunto(s)
Encéfalo/efectos de los fármacos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad/normas , Toxicología/normas , Factores de Edad , Alternativas a las Pruebas en Animales/normas , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Consenso , Difusión de Innovaciones , Humanos , Neuronas/patología , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Formulación de Políticas , Reproducibilidad de los Resultados , Medición de Riesgo , Participación de los Interesados , Pruebas de Toxicidad/métodos , Toxicología/métodos
14.
ALTEX ; 35(3): 306-352, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29485663

RESUMEN

Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).


Asunto(s)
Alternativas a las Pruebas en Animales , Guías como Asunto , Síndromes de Neurotoxicidad/etiología , Pruebas de Toxicidad/métodos , Animales , Educación , Humanos , Medición de Riesgo , Pruebas de Toxicidad/tendencias
15.
J Appl Toxicol ; 36(9): 1194-206, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26946349

RESUMEN

Zebrafish phenotypic assays have shown promise to assess human hepatotoxicity, though scoring of liver morphology remains subjective and difficult to standardize. Liver toxicity in zebrafish larvae at 5 days was assessed using gene expression as the biomarker approach, complementary to phenotypic analysis and analytical data on compound uptake. This approach aimed to contribute to improved hepatotoxicity prediction, with the goal of identifying biomarker(s) as a step towards the development of transgenic models for prioritization. Morphological effects of hepatotoxic compounds (acetaminophen, amiodarone, coumarin, methapyrilene and myclobutanil) and saccharin as the negative control were assessed after exposure in zebrafish larvae. The hepatotoxic compounds induced the expected zebrafish liver degeneration or changes in size, whereas saccharin did not have any phenotypic adverse effect. Analytical methods based on liquid chromatography-mass spectrometry were optimized to measure stability of selected compounds in exposure medium and internal concentration in larvae. All compounds were stable, except amiodarone for which precipitation was observed. There was a wide variation between the levels of compound in the zebrafish larvae with a higher uptake of amiodarone, methapyrilene and myclobutanil. Detection of hepatocyte markers (CP, CYP3A65, GC and TF) was accomplished by in situ hybridization of larvae to coumarin and myclobutanil and confirmed by real-time reverse transcription-quantitative polymerase chain reaction. Experiments showed decreased expression of all markers. Next, other liver-specific biomarkers (i.e. FABP10a and NR1H4) and apoptosis (i.e. CASP-3 A and TP53) or cytochrome P450-related (CYP2K19) and oxidoreductase activity-related (ZGC163022) genes, were screened. Links between basic mechanisms of liver injury and results of biomarker responses are described. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Marcadores Genéticos , Hígado/efectos de los fármacos , Pez Cebra/genética , Acetaminofén/toxicidad , Amiodarona/toxicidad , Animales , Apoptosis/efectos de los fármacos , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Cumarinas/toxicidad , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Hibridación in Situ , Larva/efectos de los fármacos , Larva/genética , Hígado/metabolismo , Masculino , Metapirileno/toxicidad , Nitrilos/toxicidad , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Fenotipo , Pruebas de Toxicidad , Transferrina/genética , Transferrina/metabolismo , Triazoles/toxicidad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
16.
Aquat Toxicol ; 173: 204-217, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26818709

RESUMEN

Disruption of the thyroid hormone (TH) system, an important mode of action, can lead to ecologically relevant adverse outcomes, especially during embryonic development. The present study characterizes the effects of disruption of TH synthesis on swim bladder inflation during zebrafish early-life stages using 2-mercaptobenzothiazole (MBT), a thyroid peroxidase (TPO) inhibitor. Zebrafish were exposed to different MBT concentrations until 120/168h post fertilization (hpf) and 32days post fertilization (dpf), in two sets of experiments, to investigate the effects of TPO inhibition on posterior and anterior swim bladder inflation respectively, as well as whole body thyroid hormone concentrations (triiodothyronine (T3) and its prohormone, thyroxine (T4)). At 120hpf, MBT did not directly impair posterior chamber inflation or size, while anterior chamber inflation and size was impaired at 32dpf. As previously shown in amphibians and mammals, we confirmed that MBT inhibits TPO in fish. Whole-body T4 decreased after MBT exposure at both time points, while T3 levels were unaltered. There was a significant relationship between T4 levels and the anterior chamber surface at 32dpf. The absence of effects on posterior chamber inflation can possibly be explained by maternal transfer of T4 into the eggs. These maternally derived THs are depleted at 32dpf and cannot offset TPO inhibition, resulting in impaired anterior chamber inflation. Therefore, we hypothesize that TPO inhibition only inhibits swim bladder inflation during late development, after depletion of maternally derived T4. In a previous study, we showed that iodothyronine deiodinase (ID) knockdown impaired posterior chamber inflation during early development. Our findings, in parallel with similar effects observed in fathead minnow (see part I, this issue) suggest that thyroid disruption impacts swim bladder inflation, and imply an important distinction among specific subtypes of TH disrupting chemicals. However, the existence of another - yet unknown - mode of action of MBT impacting swim bladder inflation cannot be excluded. These results can be helpful for delineating adverse outcome pathways (AOPs) linking TPO inhibition, ID inhibition and other TH related molecular initiating events, to impaired swim bladder inflation in fish during early life stages. Such AOPs can support the use of in vitro enzyme inhibition assays for predicting reduced survival due to impaired posterior and anterior chamber inflation.


Asunto(s)
Sacos Aéreos/efectos de los fármacos , Benzotiazoles/toxicidad , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Organogénesis/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/toxicidad
17.
Regul Toxicol Pharmacol ; 69(3): 496-511, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24874798

RESUMEN

The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes.


Asunto(s)
Pruebas de Toxicidad Aguda/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Laboratorios , Dosificación Letal Mediana , Organización para la Cooperación y el Desarrollo Económico , Reproducibilidad de los Resultados , Pez Cebra
18.
Toxicol Lett ; 228(3): 157-69, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24821434

RESUMEN

Fragmentary knowledge exists on cellular signaling responses underlying possible adverse health effects of CoO- and CeO2-nanoparticles (NP)s after inhalation. We aimed to perform a time kinetic study of gene expression profiles induced by these NPs in alveolar A549 and bronchial BEAS-2B epithelial cells, and investigated possible immune system modulation. The kinetics of the cell responses induced by the NPs were different between the lung epithelial models. Both CoO- and CeO2-NP exposure induced mainly downregulation of gene transcription. BEAS-2B cells were found to be more sensitive, as they showed a higher number of differentially expressed transcripts (DET) at a 10-fold lower NP-concentration than A549 cells. Hierarchical clustering of all DET indicated that the transcriptional responses were heterogeneous among the two cell types and two NPs. Between 1% and 14% DET encoding markers involved in immune processes were observed. The transcriptional impact of the metal oxide NPs appeared to be cell-dependent, both at the general and immune response level, whereas each lung epithelial cell model responded differently to the two NP types. Thus, the study provides gene expression markers and immune processes involved in CoO- and CeO2-NP-induced toxicity, and demonstrates the usefulness of comprehensive-omics studies to differentiate between NP responses.


Asunto(s)
Cerio/toxicidad , Cobalto/toxicidad , Células Epiteliales/efectos de los fármacos , Perfilación de la Expresión Génica , Pulmón/efectos de los fármacos , Nanopartículas del Metal , Óxidos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Biología Computacional , Relación Dosis-Respuesta a Droga , Células Epiteliales/inmunología , Células Epiteliales/patología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Cinética , Pulmón/inmunología , Pulmón/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcripción Genética/efectos de los fármacos
19.
Regul Toxicol Pharmacol ; 67(3): 506-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161465

RESUMEN

Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance.


Asunto(s)
Alternativas a las Pruebas en Animales , Contaminantes Ambientales/toxicidad , Sustancias Peligrosas/toxicidad , Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Alternativas a las Pruebas en Animales/métodos , Alternativas a las Pruebas en Animales/tendencias , Animales , Contaminantes Ambientales/química , Unión Europea , Regulación Gubernamental , Guías como Asunto , Sustancias Peligrosas/química , Proyectos de Investigación , Medición de Riesgo
20.
Integr Environ Assess Manag ; 9(2): 185-91, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23307398

RESUMEN

This article describes the outcome and follow-up discussions of an expert group meeting (Amsterdam, October 9, 2009) on the applicability of toxicity profiling for diagnostic environmental risk assessment. A toxicity profile was defined as a toxicological "fingerprint" of a sample, ranging from a pure compound to a complex mixture, obtained by testing the sample or its extract for its activity toward a battery of biological endpoints. The expert group concluded that toxicity profiling is an effective first tier tool for screening the integrated hazard of complex environmental mixtures with known and unknown toxicologically active constituents. In addition, toxicity profiles can be used for prioritization of sampling locations, for identification of hot spots, and--in combination with effect-directed analysis (EDA) or toxicity identification and evaluation (TIE) approaches--for establishing cause-effect relationships by identifying emerging pollutants responsible for the observed toxic potency. Small volume in vitro bioassays are especially applicable for these purposes, as they are relatively cheap and fast with costs comparable to chemical analyses, and the results are toxicologically more relevant and more suitable for realistic risk assessment. For regulatory acceptance in the European Union, toxicity profiling terminology should keep as close as possible to the European Water Framework Directive (WFD) terminology, and validation, standardization, statistical analyses, and other quality aspects of toxicity profiling should be further elaborated.


Asunto(s)
Contaminantes Ambientales/toxicidad , Medición de Riesgo/métodos , Bioensayo/métodos , Testimonio de Experto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA