Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330186

RESUMEN

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Asunto(s)
Herbicidas , Proteínas de Plantas , Protoporfirinógeno-Oxidasa , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Herbicidas/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plastidios/genética , Plastidios/metabolismo , Regulación de la Expresión Génica de las Plantas , Amaranthus/genética , Amaranthus/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/genética , Resistencia a los Herbicidas/genética , Arabidopsis/genética , Tilacoides/metabolismo
2.
Cells ; 12(12)2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37371140

RESUMEN

Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Fotosíntesis/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácido Aminolevulínico , Tiorredoxinas/metabolismo , Clorofila/metabolismo
3.
Front Plant Sci ; 14: 1294802, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38317833

RESUMEN

Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.

4.
Biol Chem ; 402(3): 379-397, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33068374

RESUMEN

Plastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.


Asunto(s)
Tetrapirroles/biosíntesis , Tiorredoxinas/metabolismo , Disulfuros/metabolismo , Oxidación-Reducción , Plantas/metabolismo , Tolueno/análogos & derivados , Tolueno/metabolismo
5.
Antioxidants (Basel) ; 7(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384439

RESUMEN

Thiol-based redox control is one of the important posttranslational mechanisms of the tetrapyrrole biosynthesis pathway. Many enzymes of the pathway have been shown to interact with thioredoxin (TRX) and Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase C (NTRC). We examined the redox-dependency of 5-aminolevulinic acid dehydratase (ALAD), which catalyzed the conjugation of two 5-aminolevulinic acid (ALA) molecules to porphobilinogen. ALAD interacted with TRX f, TRX m and NTRC in chloroplasts. Consequently, less ALAD protein accumulated in the trx f1, ntrc and trx f1/ntrc mutants compared to wild-type control resulting in decreased ALAD activity. In a polyacrylamide gel under non-reducing conditions, ALAD monomers turned out to be present in reduced and two oxidized forms. The reduced and oxidized forms of ALAD differed in their catalytic activity. The addition of TRX stimulated ALAD activity. From our results it was concluded that (i) deficiency of the reducing power mainly affected the in planta stability of ALAD; and (ii) the reduced form of ALAD displayed increased enzymatic activity.

6.
Proc Natl Acad Sci U S A ; 115(15): E3588-E3596, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581280

RESUMEN

Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Transporte de Proteínas , Tetrapirroles/biosíntesis
7.
Plant Physiol ; 174(2): 1037-1050, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432258

RESUMEN

The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and the one-helix proteins and their cyanobacterial homologs designated high-light-inducible proteins. Each member of this family is characterized by one or two LHC transmembrane domains (referred to as the LHC motif) to which potential functions such as chlorophyll binding, protein interaction, and integration of interacting partners into the plastid membranes have been attributed. Initially, LIL3 was shown to interact with geranylgeranyl reductase (CHLP), an enzyme of terpene biosynthesis that supplies the hydrocarbon chain for chlorophyll and tocopherol. Here, we show another function of LIL3 for the stability of protochlorophyllide oxidoreductase (POR). Multiple protein-protein interaction analyses suggest the direct physical interaction of LIL3 with POR but not with chlorophyll synthase. Consistently, LIL3-deficient plants exhibit substantial loss of POR as well as CHLP, which is not due to defective transcription of the POR and CHLP genes but to the posttranslational modification of their protein products. Interestingly, in vitro biochemical analyses provide novel evidence that LIL3 shows high binding affinity to protochlorophyllide, the substrate of POR. Taken together, this study suggests a critical role for LIL3 in the organization of later steps in chlorophyll biosynthesis. We suggest that LIL3 associates with POR and CHLP and thus contributes to the supply of the two metabolites, chlorophyllide and phytyl pyrophosphate, required for the final step in chlorophyll a synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Complejos de Proteína Captadores de Luz/metabolismo , Terpenos/metabolismo , Tetrapirroles/biosíntesis , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Cloroplastos , ADN Bacteriano/genética , Fluorescencia , Silenciador del Gen , Cinética , Complejos de Proteína Captadores de Luz/química , Modelos Biológicos , Mutagénesis Insercional , Mutación/genética , Fotosíntesis , Virus de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Protoclorofilida/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Tilacoides/metabolismo , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...