Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 152(2): 167-175, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322325

RESUMEN

The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i = 0-4) during the photochemical oxidation of water. The S2 state involves an equilibrium of two isomers including the low-spin S2 (LS-S2) state with its characteristic electron paramagnetic resonance (EPR) multiline signal centered at g = 2.0, and a high-spin S2 (HS-S2) state with its g = 4.1 EPR signal. The relative intensities of the two EPR signals change under experimental conditions that shift the HS-S2/LS-S2 state equilibrium. Here, we analyze the effect of glycerol on the relative stability of the LS-S2 and HS-S2 states when bound at the narrow channel of PSII, as reported in an X-ray crystal structure of cyanobacterial PSII. Our quantum mechanics/molecular mechanics (QM/MM) hybrid models of cyanobacterial PSII show that the glycerol molecule perturbs the hydrogen-bond network in the narrow channel, increasing the pKa of D1-Asp61 and stabilizing the LS-S2 state relative to the HS-S2 state. The reported results are consistent with the absence of the HS-S2 state EPR signal in native cyanobacterial PSII EPR spectra and suggest that the narrow water channel hydrogen-bond network regulates the relative stability of OEC catalytic intermediates during water oxidation.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Espectroscopía de Resonancia por Spin del Electrón , Glicerol , Hidrógeno , Oxidación-Reducción , Oxígeno , Agua
2.
Photosynth Res ; 134(2): 175-182, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28741056

RESUMEN

Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.


Asunto(s)
Clorofila/metabolismo , Cianobacterias/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/química , Clorofila A , Transporte de Electrón , Oxígeno
3.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23135403

RESUMEN

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Hemo/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Animales , Modelos Animales de Enfermedad , Eritroblastos/citología , Ferroquelatasa/metabolismo , Prueba de Complementación Genética , Humanos , Concentración de Iones de Hidrógeno , Ratones , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteínas/genética , Pez Cebra/metabolismo , Proteína Inhibidora ATPasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...