Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(17): e2203168, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36849128

RESUMEN

Myocardial fibrosis, resulting from myocardial infarction (MI), significantly alters cardiac electrophysiological properties. As fibrotic scar tissue forms, its resistance to incoming action potentials increases, leading to cardiac arrhythmia, and eventually sudden cardiac death or heart failure. Biomaterials are gaining increasing attention as an approach for addressing post-MI arrhythmias. The current study investigates the hypothesis that a bio-conductive epicardial patch can electrically synchronize isolated cardiomyocytes in vitro and rescue arrhythmic hearts in vivo. A new conceived biocompatible, conductive, and elastic polyurethane composite bio-membrane, referred to as polypyrrole-polycarbonate polyurethane (PPy-PCNU), is developed, in which solid-state conductive PPy nanoparticles are distributed throughout an electrospun aliphatic PCNU nanofiber patch in a controlled manner. Compared to PCNU alone, the resulting biocompatible patch demonstrates up to six times less impedance, with no conductivity loss over time, as well as being able to influence cellular alignment. Furthermore, PPy-PCNU promotes synchronous contraction of isolated neonatal rat cardiomyocytes and alleviates atrial fibrillation in rat hearts upon epicardial implantation. Taken together, epicardially-implanted PPy-PCNU could potentially serve as a novel alternative approach for the treatment of cardiac arrhythmias.


Asunto(s)
Infarto del Miocardio , Polímeros , Ratas , Animales , Poliuretanos , Elastómeros , Pirroles/farmacología , Miocitos Cardíacos , Infarto del Miocardio/terapia , Arritmias Cardíacas , Conductividad Eléctrica
2.
Stem Cells ; 40(6): 564-576, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35291015

RESUMEN

AIMS: To date, stroke remains one of the leading causes of death and disability worldwide. Nearly three-quarters of all strokes occur in the elderly (>65 years old), and a vast majority of these individuals develop debilitating cognitive impairments that can later progress into dementia. Currently, there are no therapies capable of reversing the cognitive complications which arise following a stroke. Instead, current treatment options focus on preventing secondary injuries, as opposed to improving functional recovery. METHODS: We reconstituted aged (20-month old) mice with Sca-1+ bone marrow (BM) hematopoietic stem cells isolated from aged or young (2-month old) EGFP+ donor mice. Three months later the chimeric aged mice underwent cerebral ischemia/reperfusion by bilateral common carotid artery occlusion (BCCAO), after which cognitive function was evaluated. Immunohistochemical analysis was performed to evaluate host and recipient cells in the brain following BCCAO. RESULTS: Young Sca-1+ cells migrate to the aged brain and give rise to beneficial microglial-like cells that ameliorate stroke-induced loss of cognitive function on tasks targeting the hippocampus and cerebellum. We also found that young Sca-1+ cell-derived microglial-like cells possess neuroprotective properties as they do not undergo microgliosis upon migrating to the ischemic hippocampus, whereas the cells originating from old Sca-1+ cells proliferate extensively and skew toward a pro-inflammatory phenotype following injury. CONCLUSIONS: This study provides a proof-of-principle demonstrating that young BM Sca-1+ cells play a pivotal role in reversing stroke-induced cognitive impairments and protect the aged brain against secondary injury by attenuating the host cell response to injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Animales , Células de la Médula Ósea , Isquemia Encefálica/complicaciones , Hipocampo , Ratones , Células Madre , Accidente Cerebrovascular/complicaciones
3.
Aging Cell ; 20(11): e13494, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34612564

RESUMEN

Ventricular remodeling following myocardial infarction (MI) is a major cause of heart failure, a condition prevalent in older individuals. Following MI, immune cells are mobilized to the myocardium from peripheral lymphoid organs and play an active role in orchestrating repair. While the effect of aging on mouse bone marrow (BM) has been studied, less is known about how aging affects human BM cells and their ability to regulate repair processes. In this study, we investigate the effect aging has on human BM cell responses post-MI using a humanized chimeric mouse model. BM samples were collected from middle aged (mean age 56.4 ± 0.97) and old (mean age 72.7 ± 0.59) patients undergoing cardiac surgery, CD34+/- cells were isolated, and NOD-scid-IL2rγnull (NSG) mice were reconstituted. Three months following reconstitution, the animals were examined at baseline or subjected to coronary artery ligation (MI). Younger patient cells exhibited greater repopulation capacity in the BM, blood, and spleen as well as greater lymphoid cell production. Following MI, CD34+ cell age impacted donor and host cellular responses. Mice reconstituted with younger CD34+ cells exhibited greater human CD45+ recruitment to the heart compared to mice reconstituted with old cells. Increased cellular responses were primarily driven by T-cell recruitment, and these changes corresponded with greater human IFNy levels and reduced mouse IL-1ß in the heart. Age-dependent changes in BM function led to significantly lower survival, increased infarct expansion, impaired host cell responses, and reduced function by 4w post-MI. In contrast, younger CD34+ cells helped to limit remodeling and preserve function post-MI.


Asunto(s)
Envejecimiento/metabolismo , Células de la Médula Ósea/metabolismo , Infarto del Miocardio/metabolismo , Neovascularización Fisiológica , Quimera por Radiación/metabolismo , Anciano , Animales , Antígenos CD34/metabolismo , Trasplante de Médula Ósea/métodos , Estudios de Cohortes , Vasos Coronarios/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Remodelación Ventricular
4.
Aging Cell ; 20(2): e13312, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33511781

RESUMEN

Recruited immune cells play a critical role in muscle repair, in part by interacting with local stem cell populations to regulate muscle regeneration. How aging affects their communication during myogenesis is unclear. Here, we investigate how aging impacts the cellular function of these two cell types after muscle injury during normal aging or after immune rejuvenation using a young to old (Y-O) or old to old (O-O) bone marrow (BM) transplant model. We found that skeletal muscle from old mice (20 months) exhibited elevated basal inflammation and possessed fewer satellite cells compared with young mice (3 months). After cardiotoxin muscle injury (CTX), old mice exhibited a blunted inflammatory response compared with young mice and enhanced M2 macrophage recruitment and IL-10 expression. Temporal immune and cytokine responses of old mice were partially restored to a young phenotype following reconstitution with young cells (Y-O chimeras). Improved immune responses in Y-O chimeras were associated with greater satellite cell proliferation compared with O-O chimeras. To identify how immune cell aging affects myoblast function, conditioned media (CM) from activated young or old macrophages was applied to cultured C2C12 myoblasts. CM from young macrophages inhibited myogenesis while CM from old macrophages reduced proliferation. These functional differences coincided with age-related differences in macrophage cytokine expression. Together, this study examines the infiltration and proliferation of immune cells and satellite cells after injury in the context of aging and, using BM chimeras, demonstrates that young immune cells retain cell autonomy in an old host to increase satellite cell proliferation.


Asunto(s)
Senescencia Celular/inmunología , Desarrollo de Músculos/inmunología , Células Satélite del Músculo Esquelético/inmunología , Animales , Cardiotoxinas/farmacología , Senescencia Celular/efectos de los fármacos , Ratones , Desarrollo de Músculos/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos
5.
J Neuroinflammation ; 17(1): 51, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32028989

RESUMEN

BACKGROUND: Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. METHODS: Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. RESULTS: Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. CONCLUSION: Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow.


Asunto(s)
Disfunción Cognitiva/terapia , Trasplante de Células Madre Hematopoyéticas , Aprendizaje por Laberinto/fisiología , Radioterapia/efectos adversos , Recuperación de la Función/fisiología , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/etiología , Espinas Dendríticas/fisiología , Hipocampo/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Ratones , Neuronas/fisiología , Ataxias Espinocerebelosas/genética , Resultado del Tratamiento
6.
Aging Cell ; 19(3): e13103, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31960578

RESUMEN

Extracellular vesicles (EVs) have emerged as important regulators of inter-cellular and inter-organ communication, in part via the transfer of their cargo to recipient cells. Although circulating EVs have been previously studied as biomarkers of aging, how circulating EVs change with age and the underlying mechanisms that contribute to these changes are poorly understood. Here, we demonstrate that aging has a profound effect on the circulating EV pool, as evidenced by changes in concentration, size, and cargo. Aging also alters particle function; treatment of cells with EV fractions isolated from old plasma reduces macrophage responses to lipopolysaccharide, increases phagocytosis, and reduces endothelial cell responses to vascular endothelial growth factor compared to cells treated with young EV fractions. Depletion studies indicate that CD63+ particles mediate these effects. Treatment of macrophages with EV-like particles revealed that old particles increased the expression of EV miRNAs in recipient cells. Transfection of cells with microRNA mimics recapitulated some of the effects seen with old EV-like particles. Investigation into the underlying mechanisms using bone marrow transplant studies revealed circulating cell age does not substantially affect the expression of aging-associated circulating EV miRNAs in old mice. Instead, we show that cellular senescence contributes to changes in particle cargo and function. Notably, senolytic treatment of old mice shifted plasma particle cargo and function toward that of a younger phenotype. Collectively, these results demonstrate that senescent cells contribute to changes in plasma EVs with age and suggest a new mechanism by which senescent cells can affect cellular functions throughout the body.


Asunto(s)
Envejecimiento/sangre , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Envejecimiento/genética , Animales , Biomarcadores/metabolismo , Trasplante de Médula Ósea , Senescencia Celular/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Femenino , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Jurkat , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Transfección , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA