Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Heliyon ; 10(5): e27084, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38444467

Triple-negative breast cancer (TNBC) is more prone to recurrence and metastasis relative to other subtypes of breast cancer, leading to an extremely poor prognosis. The increasing potential chemoresistance of TNBC patients is mainly due to that tumor cells escape from apoptosis. In recent years, statins have demonstrated extensive anti-tumor effects. It is worth noting that statins have more effective anti-tumor effects on TNBC cells and drug-resistant breast cancer cells. Therefore, this study examines the superior cytotoxic effects of statins on TNBC cell lines and further explores their potential therapeutic mechanisms. We detected different cell phenotypes and found that statins significantly reduced the cell viability of TNBC cells. Specifically, pitavastatin showed an obvious induction in cell death, cell cycle arrest and oxidative stress in TNBC MDA-MB-231 cells. The reversal effect of iron chelator desferrioxamine (DFO) on the morphological and molecular biological changes induced by pitavastatin has revealed a new mode of cell death induced by pitavastatin: ferroptosis. This ferroptotic effect was strengthened by the decreased expression of glutathione peroxidase 4 (GPx4) as well as newly discovered ferroptosis suppressor protein 1 (FSP1). The data showed that ferroptotic death of MDA-MB-231 cells is autophagy-dependent and mediated by the mevalonate pathway. Finally, we found that therapeutic oral doses of statins can inhibit the growth of transplanted tumors, which establishes statins as a potential treatment for TNBC patients. In conclusion, we found pitavastatin could induce autophagy-dependent ferroptosis in TNBC cells via the mevalonate pathway which may become a potential adjuvant treatment option for TNBC patients.

3.
Ann Transl Med ; 10(23): 1280, 2022 Dec.
Article En | MEDLINE | ID: mdl-36618780

Background: Transmembrane p24 trafficking protein (TMED) family members are implicated in several solid tumors, but their clinical relevance for breast cancer (BC) remains unclear. This study aimed to probe their prognostic values and relations with tumor immunity in BC. Methods: TMED family mRNA expression was assessed in five microarray datasets (GSE65212, GSE42568, GSE5364, GSE22820 and GSE45827) from Gene Expression Omnibus (GEO) database and invasive breast cancer (BRCA) cohort from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curve was performed to determine the predictive values of filtered members of the TMED family. The protein expressions of screen genes were validated by Clinical Proteomic Tumor Analysis Consortium (CPTAC) data from University of ALabama at Birmingham CANcer data analysis portal (UALCAN) and detected in the clinical specimens by western blot assay. Clinicopathologic variables were analyzed with bc-GenExMiner, and patient prognostic data were obtained with Kaplan-Meier Plotter. In vitro wound healing and invasion assays were performed on siRNA-transfected BC cell lines. TIMER 2.0, SangerBox, and ImmPort were used to evaluate tumor immune infiltration, immune checkpoints, and other immune-related genes. CbioPortal, Metascape, Expression2kinases, and LinkedOmics were used to explore gene regulatory network. Results: BC tissues expressed TMED2/3/4/9 at a higher level than normal tissues, providing diagnostic potential. All the areas under the ROC curve for TMED2/3/4/9 were more than 0.7. TMED2/3/4/9 correlated with numerous clinical variables, including lymph node status, Scarff-Bloom-Richardson score (SBR), Nottingham Prognostic Index (NPI), estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and triple-negative breast cancer (TNBC) status, and their high expression predicted the poor prognosis of BC patients. TMED2/3/4/9 knockdown drastically inhibited the migratory and invasive capacities of MDA-MB-231 and HCC1937 cells. TMED2/3/4/9 expressions correlated negatively with the infiltration of tumor-suppressive immune cells such as CD8+ T cells, dendritic cells, and natural killer cells, and was inversely related to a variety of immune checkpoint genes, including programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4). A set of kinases, transcription factors, and microRNAs (miRNAs) may regulate TMED2/3/4/9 abnormalities at the genome level. Conclusions: TMED2/3/4/9 may serve as diagnostic, prognostic, and immune-suppressive biomarkers in BC.

...