Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Biomed Mater ; 19(2)2024 Feb 12.
Article En | MEDLINE | ID: mdl-38290152

Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(ϵ-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used. They were rat ventricular cardiomyoblasts (H9c2), mouse atrial cardiomyocytes (CMs) (HL-1), and human ventricular CMs. Based on the results, it can be concluded that cardiac cells cultured on nanofibers exhibit greater maturity in terms of orientation, morphology, and gene expression levels compared to cells cultured on polystyrene plates. Additionally, the physicochemical properties of nanofibers affecting the functionality of cardiac cells from different species and different parts of the heart were evaluated. These studies can support research on understanding and explaining mechanisms leading to cellular maturity present in the heart and the selection of nanofibers that will effectively help the maturation of CMs.


Nanofibers , Tissue Scaffolds , Humans , Rats , Mice , Animals , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyurethanes , Rodentia , Polyesters/chemistry , Tissue Engineering/methods
2.
HardwareX ; 16: e00486, 2023 Dec.
Article En | MEDLINE | ID: mdl-37964896

3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials. Commercial extruders frequently require a large amount of raw material for experimental purposes, even for small quantities of filament. In our publication, we propose a simple system for pressure filament extruding, which allows obtaining up to 1-meter-long filament suitable for fused filament fabrication-type 3D printers, requiring only 30 g of material to begin work. Our device is based on stainless steel pipes used as a container for material, a basic electric heating system with a proportional-integral-derivative controller, and a pressurised air source with an air pressure regulator. We tested our device on various mixes of polylactide and polycaprolactone with ß-tricalcium phosphate and demonstrated the possibility of screening production and testing of new materials for 3D-printed bone implants.

3.
ACS Biomater Sci Eng ; 9(12): 6683-6697, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-38032398

Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 µm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.


Biocompatible Materials , Tissue Scaffolds , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Urethane , Urea , Endothelial Cells , Carbamates
4.
Polymers (Basel) ; 15(22)2023 Nov 10.
Article En | MEDLINE | ID: mdl-38006099

The nanoprecipitation method was used to formulate ε-polycaprolactone (PCL) into fluorescent nanoparticles. Two methods of mixing the phases were evaluated: introducing the organic phase into the aqueous phase dropwise and via a specially designed microfluidic device. As a result of the nanoprecipitation process, fluorescein-loaded nanoparticles (NPs) with a mean diameter of 127 ± 3 nm and polydispersity index (PDI) of 0.180 ± 0.009 were obtained. The profiles of dye release were determined in vitro using dialysis membrane tubing, and the results showed a controlled release of the dye from NPs. In addition, the cytotoxicity of the NPs was assessed using an MTT assay. The PCL NPs were shown to be safe and non-toxic to L929 and MG63 cells. The results of the present study have revealed that PCL NPs represent a promising system for developing new drug delivery systems.

5.
Biomater Adv ; 151: 213489, 2023 Aug.
Article En | MEDLINE | ID: mdl-37267750

Polyester-based granular scaffolds are a potent material for tissue engineering due to their porosity, controllable pore size, and potential to be molded into various shapes. Additionally, they can be produced as composite materials, e.g., mixed with osteoconductive ß-tricalcium phosphate or hydroxyapatite. Such polymer-based composite materials often happen to be hydrophobic, which disrupts cell attachment and decreases cell growth on the scaffold, undermining its primary function. In this work, we propose the experimental comparison of three modification techniques for granular scaffolds to increase their hydrophilicity and cell attachment. Those techniques include atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating. Composite polymer/ß-tricalcium phosphate granules have been produced in a solution-induced phase separation (SIPS) process using commercially available biomedical polymers: poly(lactic acid), poly(lactic-co-glycolic acid), and polycaprolactone. We used thermal assembly to prepare cylindrical scaffolds from composite microgranules. Atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating showed similar effects on polymer composites' hydrophilic and bioactive properties. All modifications significantly increased human osteosarcoma MG-63 cell adhesion and proliferation in vitro compared to cells cultured on unmodified materials. In the case of polycaprolactone/ß-tricalcium phosphate scaffolds, modifications were the most necessary, as unmodified polycaprolactone-based material disrupted the cell attachment. Modified polylactide/ß-tricalcium phosphate scaffold supported excellent cell growth and showed ultimate compressive strength exceeding this of human trabecular bone. This suggests that all investigated modification techniques can be used interchangeably for increasing wettability and cell attachment properties of various scaffolds for medical applications, especially those with high surface and volumetric porosity, like granular scaffolds.


Bone Neoplasms , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Polymers/pharmacology , Cell Proliferation
6.
ACS Omega ; 8(24): 22055-22066, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37360448

Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.

7.
Biomater Adv ; 146: 213317, 2023 Mar.
Article En | MEDLINE | ID: mdl-36738523

3D printing is a promising technique for obtaining bone implants. However, 3D printed bone implants, especially those printed using fused deposition modelling, are still in the experimental phase despite decades of work. Research on new materials faces numerous limitations, such as reagents' cost and machines' high prices to produce filaments for 3D printing polymer-ceramic composites for fused deposition modelling. This paper presents a simple, low-cost, and fast method of obtaining polymer-ceramic filaments using apparatus consisting of parts available in a hardware store. The method's versatility for producing the filaments was demonstrated on two different biodegradable polymers - polylactic acid and polycaprolactone - and different concentrations of calcium phosphate - ß-tricalcium phosphate - in the composite, up to 50 % by weight. For screening purposes, numerous scaffolds were 3D printed from the obtained filaments on a commercial 3D printer. Structural, mechanical, and biological tests show that the 3D printed scaffolds are suitable for bone implants, as their structure, mechanical, and non-cytotoxic properties are evident. Moreover, the proposed method of composite forming is a simplification of the processes of manufacturing and researching 3D printed materials with potential applications in the regeneration of bone tissue.


Bone and Bones , Polymers , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Ceramics
8.
Biomater Adv ; 144: 213195, 2023 Jan.
Article En | MEDLINE | ID: mdl-36434927

Synthetic bone repair materials are becoming increasingly popular in tissue engineering as a replacement for autografts and human/animal-based bone grafts. The biomedical application requires precise control over the material composition and structure, as well as over the size of granulate used for filling the bone defects, as the pore size and interconnectivity affect the regeneration process. This paper proposes a process of alloplastic and biodegradable polylactic acid/ß-tricalcium phosphate granulates preparation and its parameters described. Using solvent-induced phase separation technique, porous spheres have been obtained in various sizes and morphologies. The design of the experiment's approach generated an experimental plan for further statistical modeling using the resulting data. The statistical modeling approach to the data from conducting a designed set of experiments allowed analysis of the influence of process parameters on the properties of the resulting granules. We confirmed that the content of ß-tricalcium phosphate plays the most significant role in the size distribution of prepared granulate. The shape of the particles becomes less spherical with higher phosphate concentration in the emulsion. The proposed technique allows preparing porous granulates in the 0.2-1.8 mm diameter range, where granules' mean diameter and sphericity are tunable with polymer and phosphate concentrations. The granulate created a potentially implantable scaffold for resected bone regeneration, as cytotoxicity tests assured the material is non-cytotoxic in vitro, and human mesenchymal stem cells have been cultured on the surface of granulates. Results from cell cultures seeded on the Resomer LR 706S granulates were the most promising.


Calcium Phosphates , Tissue Scaffolds , Animals , Humans , Tissue Scaffolds/chemistry , Porosity , Calcium Phosphates/chemistry
9.
Adv Funct Mater ; 33(40)2023 Oct 02.
Article En | MEDLINE | ID: mdl-38464762

Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro-scale vasculature such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length-scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, we adopt two existing techniques to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles (FMPs) were incorporated into microfibers produced by solution electrowriting (SEW) and fiber electropulling (FEP). By loading ECs with superparamagnetic iron oxide nanoparticles (SPIONs), the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice was selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This work introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility for the fields of tissue engineering and regenerative medicine.

10.
Int J Biol Macromol ; 222(Pt A): 856-867, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36174868

In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.


Chitosan , Nanofibers , Female , Humans , Tenofovir/pharmacology , Chitosan/chemistry , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Ethylene Oxide , Fumarates , Polymers/chemistry , Hydrogen-Ion Concentration
11.
Biomater Adv ; 134: 112544, 2022 Mar.
Article En | MEDLINE | ID: mdl-35525759

Rapid endothelialization helps overcome the limitations of small-diameter vascular grafts. To develop biomimetic non-thrombogenic coatings supporting endothelialization, medical-grade polyurethane (PU) nanofibrous mats and tubular scaffolds with a diameter below 6 mm prepared by solution blow spinning were coated with polydopamine (PDA), or PDA and gelatin (PDA/Gel). The scaffolds were characterized by scanning electron microscopy, porosity measurement, tensile testing, wettability, Fourier Transform Infrared spectroscopy, and termogravimetric analysis, followed by the measurement of coating stability on the tubular scaffolds. The effect of coating on scaffold endothelialization and hemocompatibility was evaluated using human umbilical vein endothelial cells (HUVECs) and human platelets, showing low numbers of adhering platelets and significantly higher numbers of HUVECs on PDA- and PDA/Gel-coated mats compared to control samples. Tubular PU scaffolds and commercial ePTFE prostheses coated with PDA or PDA/Gel were colonized with HUVECs using radial magnetic cell seeding. PDA/Gel-coated samples achieved full endothelial coverage within 1-3 days post-endothelialization. Altogether, PDA and PDA/Gel coating significantly enhance the endothelialization on the flat surfaces, tubular small-diameter scaffolds, and commercial vascular prostheses. The presented approach constitutes a fast and efficient method of improving scaffold colonization with endothelial cells, expected to work equally well upon implantation.


Coated Materials, Biocompatible , Gelatin , Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Gelatin/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Indoles , Polymers , Polyurethanes/chemistry
12.
Sci Rep ; 12(1): 9047, 2022 05 31.
Article En | MEDLINE | ID: mdl-35641539

Nanofibrous materials are widely investigated as a replacement for the extracellular matrix, the 3D foundation for cells in all tissues. However, as with every medical material, nanofibers too must pass all safety evaluations like in vitro cytotoxicity assays or in vivo animal tests. Our literature research showed that differences in results of widely used cytotoxicity assays applied to evaluate nanofibrous materials are poorly understood. To better explore this issue, we prepared three nanofibrous materials with similar physical properties made of poly-L-lactic acid, polyurethane, and polycaprolactone. We tested five metabolic cytotoxicity assays (MTT, XTT, CCK-8, alamarBlue, PrestoBlue) and obtained different viability results for the same nanofibrous materials. Further, the study revealed that nanofibrous materials affect the reaction of cytotoxicity assays. Considering the results of both described experiments, it is evident that validating all available cytotoxicity assays for nanofibrous materials and possibly other highly porous materials should be carefully planned and verified using an additional analytical tool, like scanning electron microscopy or, more preferably, confocal microscopy.


Nanofibers , Animals , Extracellular Matrix , Microscopy, Electron, Scanning , Nanofibers/toxicity , Porosity
13.
Int J Mol Sci ; 23(9)2022 May 05.
Article En | MEDLINE | ID: mdl-35563526

Chitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface. Unmodified nanofibers displayed highly porous structure with the presence of uniform, randomly aligned nanofibers, in contrast to coated materials in which almost all the free spaces were filled in with poly(dimethylsiloxane). Infrared spectroscopy indicated that solution blow technique did not influence the molecular nature of native polymers. Obtained nanofibers exhibited sufficient wound exudate absorbency, which appears beneficial to moisturize the wound bed during the healing process. Formulations displayed greater tensile strength as compared to commercial hydrofiber-like dressing materials comprised of carboxymethylcellulose sodium or calcium alginate, which points toward their protective function against mechanical stress. Coating with hydrophobic poly(dimethylsiloxane) (applied to favor nanofiber removal from the wound surface) impacted porosity and decreased both mechanical properties and adherence to excised human skin, though the obtained values were comparable to those attained for commercial hydrofiber-like materials. In vitro cytotoxicity and irritancy studies showed biocompatibility and no skin irritant response of nanofibers in contact with a reconstituted three-dimensional human skin model, while scratch assay using human fibroblast cell line HDFa revealed the valuable potential of CS/PEO nanofibers to promote cell migration at an early stage of injury.


Chitosan , Nanofibers , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Dimethylpolysiloxanes , Ethylene Oxide , Humans , Nanofibers/chemistry , Polyethylene Glycols/chemistry
14.
J Biol Eng ; 15(1): 27, 2021 Dec 19.
Article En | MEDLINE | ID: mdl-34924005

This study aimed to analyze the growth of two types of blood vessel building cells: endothelial cells (ECs) and smooth muscle cells (SMCs) on surfaces with different morphology. Two types of materials, differing in morphology, were produced by the solution blow spinning technique. One-layer materials consisted of one fibrous layer with two fibrous surfaces. Bi-layer materials consisted of one fibrous-solid layer and one fibrous layer, resulting in two different surfaces. Additionally, materials with different average fiber diameters (about 200, 500, and 900 nm) were produced for each group. It has been shown that it is possible to obtain structures with a given morphology by changing the selected process parameters (working distance and polymer solution concentration). Both morphology (solid versus fibrous) and average fiber diameter (submicron fibers versus microfibers) of scaffolds influenced the growth of ECs. However, this effect was only visible after an extended period of culture (6 days). In the case of SMCs, it was proved that the best growth of SMCs is obtained for micron fibers (with an average diameter close to 900 nm) compared to the submicron fibers (with an average diameter below 900 nm).

15.
Materials (Basel) ; 14(6)2021 Mar 17.
Article En | MEDLINE | ID: mdl-33802725

The growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds. Rheological methods are completed with extensive image analysis to determine the spinnability window for a polymer-solvent system and qualitatively establish the influence of polymer solution concentration and collector rotational speed on fiber morphology, diameter, and alignment. Process parameter selection for a tissue engineering scaffold target application is discussed, considering the varying structural properties of the native extracellular matrix of the tissue of interest.

16.
Biosensors (Basel) ; 11(5)2021 Apr 23.
Article En | MEDLINE | ID: mdl-33922423

Regenerative medicine and stem cells could prove to be an effective solution to the problem of treating heart failure caused by ischemic heart disease. However, further studies on the understanding of the processes which occur during the regeneration of damaged tissue are needed. Microfluidic systems, which provide conditions similar to in vivo, could be useful tools for the development of new therapies using stem cells. We investigated how mesenchymal stem cells (MSCs) affect the metabolic activity of cardiac cells (rat cardiomyoblasts and human cardiomyocytes) incubated with a potent uncoupler of mitochondrial oxidative phosphorylation under microfluidic conditions. A cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was used to mimic disfunctions of mitochondria of cardiac cells. The study was performed in a microfluidic system integrated with nanofiber mats made of poly-l-lactid acid (PLLA) or polyurethane (PU). The microsystem geometry allows four different cell cultures to be conducted under different conditions (which we called: normal, abnormal-as both a mono- and co-culture). Metabolic activity of the cells, based on the bioluminescence assay, was assessed in the culture's performed in the microsystem. It was proved that stem cells increased metabolic activity of cardiac cells maintained with FCCP.


Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/chemistry , Lab-On-A-Chip Devices , Animals , Cell Culture Techniques , Cells, Cultured , Humans , Myocytes, Cardiac/cytology , Rats , Stem Cells
17.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article En | MEDLINE | ID: mdl-33652598

The search for the perfect bone graft material is an important topic in material science and medicine. Despite human bone being the ideal material, due to its composition, morphology, and familiarity with cells, autografts are widely considered demanding and cause additional stress to the patient because of bone harvesting. However, human bone from tissue banks can be used to prepare materials in eligible form for transplantation. Without proteins and fats, the bone becomes a non-immunogenic matrix for human cells to repopulate in the place of implantation. To repair bone losses, the granulate form of the material is easy to apply and forms an interconnected porous structure. A granulate composed of ß-tricalcium phosphate, pulverized human bone, and chitosan-a potent biopolymer applied in tissue engineering, regenerative medicine, and biotechnology-has been developed. A commercial encapsulator was used to obtain granulate, using chitosan gelation upon pH increase. The granulate has been proven in vitro to be non-cytotoxic, suitable for MG63 cell growth on its surface, and increasing alkaline phosphatase activity, an important biological marker of bone tissue growth. Moreover, the granulate is suitable for thermal sterilization without losing its form-increasing its convenience for application in surgery for guided bone regeneration in case of minor or non-load bearing voids in bone tissue.


Bone Regeneration/drug effects , Bone and Bones/metabolism , Calcium Phosphates , Chitosan , Materials Testing , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Humans
18.
Int J Mol Sci ; 21(18)2020 Sep 16.
Article En | MEDLINE | ID: mdl-32947971

The use of nanofibrous materials in the field of tissue engineering requires a fast, efficient, scalable production method and excellent wettability of the obtained materials, leading to enhanced cell adhesion. We proposed the production method of superhydrophilic nanofibrous materials in a two-step process. The process is designed to increase the wettability of resulting scaffolds and to enhance the rate of fibroblast cell adhesion. Polyurethane (PU) nanofibrous material was produced in the solution blow spinning process. Then the PU fibers surface was modified by dopamine polymerization in water solution. Two variants of the modification were examined: dopamine polymerization under atmospheric oxygen (V-I) and using sodium periodate as an oxidative agent (V-II). Hydrophobic PU materials after the treatment became highly hydrophilic, regardless of the modification variant. This effect originates from polydopamine (PDA) coating properties and nanoscale surface structures. The modification improved the mechanical properties of the materials. Materials obtained in the V-II process exhibit superior properties over those from the V-I, and require shorter modification time (less than 30 min). Modifications significantly improved fibroblasts adhesion. The cells spread after 2 h on both PDA-modified PU nanofibrous materials, which was not observed for unmodified PU. Proposed technology could be beneficial in applications like scaffolds for tissue engineering.


Cell Adhesion/drug effects , Indoles/pharmacology , Nanofibers , Polymers/pharmacology , Polyurethanes/pharmacology , Tissue Engineering/methods , Animals , Cell Line , Coated Materials, Biocompatible , Elastic Modulus , Fibroblasts , Indoles/toxicity , Materials Testing , Mice , Microscopy, Electron, Scanning , Nanofibers/chemistry , Nanofibers/toxicity , Oxidants/pharmacology , Oxygen/pharmacology , Periodic Acid/pharmacology , Polymers/toxicity , Polyurethanes/toxicity , Tensile Strength , Tissue Scaffolds , Wettability
19.
Cell Biol Int ; 43(3): 265-278, 2019 Mar.
Article En | MEDLINE | ID: mdl-30597671

3D scaffolds represent an attractive substrate for studying macrophage activation and modification since they mimic extracellular matrix (ECM). However, macrophage response to such materials, particularly with respect to angiogenic potential is still poorly recognized. Therefore, we investigated the effect of 3D nanofibrous polystyrene scaffolds (NPSs) versus tissue culture polystyrene (TCPS) on THP-1-derived macrophages in various environmental conditions, for example, standard (m0), pro-inflammatory (m1), or anti-inflammatory (m2) with respect to pro-angiogenic potential. There were no differences in the expression of TNF-α and IL-10 mRNAs and respective proteins in cells cultured on NPSs compared with flat polystyrene (TCPS), however, NPSs induced an increased VEGF production by macrophages cultured in m0 and m1 media. Cells cultured in m1, and m2 conditions secreted elevated amounts of TNF-α and IL-10, respectively, irrespective of substrate surface geometry. Each macrophage population contains large, medium, and small cells. Moreover, there were significant differences in the proportion of large to small macrophages depending on the medium composition, that is, in m0, m1, and m2 media these proportions were 1:4, 1:3, and 1:10, respectively. The ultrastructure and the immunoexpression of TNF-α and IL-10 were analyzed under a confocal microscope. The results demonstrated differences in cell ultrastructure and suggested that the larger cells were pro-inflammatory macrophages, while the smaller cells were anti-inflammatory macrophages. In conclusion, NPSs activate macrophage pro-angiogenic potential. In addition, an increase in the proportion of pro-inflammatory macrophages relative to anti-inflammatory ones in a given population favors this potential.


Macrophages/drug effects , Nanofibers/chemistry , Neovascularization, Physiologic/drug effects , Polystyrenes/pharmacology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Size , Cytokines/genetics , Cytokines/metabolism , Humans , Macrophages/ultrastructure , Nanofibers/ultrastructure , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , THP-1 Cells , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
20.
Mater Sci Eng C Mater Biol Appl ; 75: 305-316, 2017 Jun 01.
Article En | MEDLINE | ID: mdl-28415467

This paper presents a comparison and evaluation of cardiac cell proliferation on poly(l-lactic acid) (PLLA) and polyurethane (PU) nanofibrous mats fabricated by solution blow spinning (SBS). Three different cardiac cell lines: rat cardiomyoblasts (H9C2 line), human (HCM) and rat cardiomyocytes (RCM) were used for experiments. Cell morphology, orientation and proliferation were investigated on non-modified and protein-modified (fibronectin, collagen, gelatin, laminin, poly-l-lysine) surfaces of both types of nanofibers. Obtained results of cell culture on nanofibers surfaces were compared to the results of cell culture on polystyrene (PS) surfaces modified in the same way. The results indicated that in most cases polymeric nanofibers (PLLA and PU) are better substrates for cardiac cell culture than PS surfaces. All types of investigated cells, cultured on nanofibers (PLLA and PU), had more elongated shape than cells cultured on PS surfaces. Moreover, cells were arranged in parallel to each other, according to fibers orientation. Additionally, it was shown that the protein modifications of investigated surfaces influenced on cell proliferation. Therefore, we suggest that the cardiac cell culture on nanofibrous mats fabricated by SBS could be more advanced experimental in vitro model for studies on the effect of various cardiac drugs than traditional culture on PS surface.


Cell Culture Techniques/methods , Myoblasts, Cardiac/metabolism , Myocytes, Cardiac/metabolism , Nanofibers/chemistry , Polyesters/chemistry , Polyurethanes/chemistry , Animals , Cell Line , Mice , Myoblasts, Cardiac/cytology , Myocytes, Cardiac/cytology , Rats
...