Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Immunol ; 15: 1358247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469316

RESUMEN

Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.


Asunto(s)
Mariposas Nocturnas , Pseudomonas , Animales , Larva , Péptidos/farmacología , Antibacterianos/farmacología
2.
Dev Comp Immunol ; 147: 104749, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37279831

RESUMEN

We report differences in the course of infection of G. mellonella larvae with P. entomophila via intrahemocelic and oral routes. Survival curves, larval morphology, histology, and induction of defence response were investigated. Larvae injected with 10 and 50 cells of P. entomophila activated a dose-dependent immune response, which was manifested by induction of immune-related genes and dose-dependent defence activity in larval hemolymph. In contrast, after the oral application of the pathogen, antimicrobial activity was detected in whole hemolymph of larvae infected with the 103 but not 105 dose in spite of the induction of immune response manifested as immune-relevant gene expression and defence activity of electrophoretically separated low-molecular hemolymph components. Among known proteins induced after the P. entomophila infection, we identified proline-rich peptide 1 and 2, cecropin D-like peptide, galiomycin, lysozyme, anionic peptide 1, defensin-like peptide, and a 27 kDa hemolymph protein. The expression of the lysozyme gene and the amount of protein in the hemolymph were correlated with inactivity of hemolymph in insects orally infected with a higher dose of P. entomophila, pointing to its role in the host-pathogen interaction.


Asunto(s)
Mariposas Nocturnas , Muramidasa , Animales , Larva , Péptidos , Insectos , Proteínas , Hemolinfa
3.
Sci Rep ; 12(1): 14406, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002552

RESUMEN

The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.


Asunto(s)
Nosema , Protoporfirinas , Animales , Amidas/farmacología , Abejas , Inmunidad , Monofenol Monooxigenasa , Nosema/fisiología , Protoporfirinas/farmacología
4.
Sci Rep ; 12(1): 11737, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817811

RESUMEN

Galleria mellonella cationic protein 8 (GmCP8) is a hemolymph protein previously identified as an opsonin and an inhibitor of fungal proteases. In this work, we showed its bactericidal activity toward Pseudomonas entomophila, Pseudomonas aeruginosa, Bacillus thuringiensis, Staphylococcus aureus, and Escherichia coli and against yeast-like fungi Candida albicans. The activity against E. coli was correlated with bacterial membrane permeabilization. In turn, in the case of P. entomophila, B. thuringiensis, and C. albicans, the atomic force microscopy analysis of the microbial surface showed changes in the topography of cells and changes in their nanomechanical properties. GmCP8 also showed the inhibitory activity toward the serine protease trypsin and the metalloproteinase thermolysin. The expression of the gene encoding the GmCP8 protein did not increase either in the gut or in the fat body of G. mellonella after oral infection with P. entomophila. Similarly, the amount of GmCP8 in the hemolymph of G. mellonella did not change in immune-challenged insects. However, when GmCP8 was injected into the G. mellonella hemocel, a change in the survival curve was observed in the infected larvae. Our results shed new light on the function of GmCP8 protein in insect immunity, indicating its role in humoral defence mechanisms.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Candida albicans , Escherichia coli , Hemolinfa/metabolismo , Insectos , Larva/microbiología , Mariposas Nocturnas/microbiología , Proteínas/metabolismo
5.
Oxid Med Cell Longev ; 2021: 8447456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950419

RESUMEN

Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.


Asunto(s)
Antioxidantes/farmacología , Citoprotección , Regulación de la Expresión Génica/efectos de los fármacos , Hepatopatías/tratamiento farmacológico , Magnesio/farmacología , Estrés Oxidativo , Vanadatos/farmacología , Animales , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peroxidación de Lípido , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Wistar
6.
J Invertebr Pathol ; 185: 107656, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464656

RESUMEN

It may seem that the most important issues related to insect immunity have already been described. However, novel phenomena observed in recent years shed new light on the understanding of the immune response in insects.The adaptive abilities of insects helped them to populate all ecological land niches.One important adaptive ability of insects that facilitates their success is the plasticity of their immune system. Although they only have innate immune mechanisms, insects can increase their resistance after the first encounter with the pathogen. In recent years, this phenomenon,namedimmunepriming, has become a "hot topic" in immunobiology.Priming can occur within or across generations. In the first case, the resistance of a given individual can increase after surviving a previous infection. Transstadial immune priming occurs when infection takes place at one of the initial developmental stages and increased resistance is observed at the pupal or imago stages. Priming across generations (transgenerationalimmune priming, TGIP) relies on the increased resistance of the offspring when one or both parents are infected during their lifetime.Despite the attention that immune priming has received, basic questions remain to be answered, such as regulation of immune priming at the molecular level. Research indicates that pathogen recognition receptors (PRRs) can be involved in the priming phenomenon. Recent studies have highlighted the special role of microRNAs and epigenetics, which can influence expression of genes that can be transmitted through generations although they are not encoded in the nucleotide sequence. Considerable amounts of research are required to fully understand the mechanisms that regulate priming phenomena. The aim of our work is to analyse thoroughly the most important information on immune priming in insects and help raise pertinent questions such that a greater understanding of this phenomenon can be obtained in the future.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Insectos/inmunología , Animales , Terminología como Asunto
7.
Molecules ; 26(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443685

RESUMEN

Recognition of pathogen-associated molecular patterns (PAMPs) by appropriate pattern recognition receptors (PRRs) is a key step in activating the host immune response. The role of a fungal PAMP is attributed to ß-1,3-glucan. The role of α-1,3-glucan, another fungal cell wall polysaccharide, in modulating the host immune response is not clear. This work investigates the potential of α-1,3-glucan as a fungal PAMP by analyzing the humoral immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan. We demonstrated that 57-kDa and 61-kDa hemolymph proteins, identified as ß-1,3-glucan recognition proteins, bound to A. niger α-1,3-glucan. Other hemolymph proteins, i.e., apolipophorin I, apolipophorin II, prophenoloxidase, phenoloxidase activating factor, arylphorin, and serine protease, were also identified among α-1,3-glucan-interacting proteins. In response to α-1,3-glucan, a 4.5-fold and 3-fold increase in the gene expression of antifungal peptides galiomicin and gallerimycin was demonstrated, respectively. The significant increase in the level of five defense peptides, including galiomicin, corresponded well with the highest antifungal activity in hemolymph. Our results indicate that A. niger α-1,3-glucan is recognized by the insect immune system, and immune response is triggered by this cell wall component. Thus, the role of a fungal PAMP for α-1,3-glucan can be postulated.


Asunto(s)
Aspergillus/química , Glucanos/metabolismo , Interacciones Huésped-Patógeno , Mariposas Nocturnas/microbiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Animales , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hemolinfa/metabolismo , Inmunización , Larva , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Unión Proteica/efectos de los fármacos , Análisis de Supervivencia
8.
J Insect Physiol ; 131: 104239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33845095

RESUMEN

The work presents identification of antimicrobial peptides and proteins (AMPs) in the hemolymph of Galleria mellonella larvae infected with two Pseudomonas aeruginosa strains (ATCC 27,853 and PA18), differing in the profile of secreted proteases. The insects were immunized with bacteria cultivated in rich (LB) and minimal (M9) media, which resulted in appearance of a similar broad set of AMPs in the hemolymph. Among them, 13 peptides and proteins were identified, i.e. proline-rich peptides 1 and 2, lebocin-like anionic peptide 1 and anionic peptide 2, defensin/galiomicin, cecropin, cecropin D-like peptide, apolipophoricin, gallerimycin, moricin-like peptide B, lysozyme, apolipophorin III, and superoxide dismutase. Bacterial strain- and/or medium-dependent changes in the level of proline-rich peptide 1, anionic peptide 1 and 2, moricin-like peptide B, cecropin D-like and gallerimycin were observed. The analysis of the expression of genes encoding cecropin, gallerimycin, and galiomicin indicated that they were differently affected by the bacterial strain but mainly by the medium used for bacterial culture. The highest expression was found for the LB medium. In addition to the antibacterial and antifungal activity, proteolytic activity was detected in the hemolymph of the P. aeruginosa-infected insects. Based on these results and those presented in our previous reports, it can be postulated that the appearance of AMPs in G. mellonella hemolymph can be triggered not only by P. aeruginosa pathogen associated molecular patterns (PAMPs) but also by bacterial extracellular proteases secreted during infection. However, although there were no qualitative differences in the set of AMPs depending on the P. aeruginosa strain and medium, differences in the level of particular AMPs synthesized in response to the bacteria used were observed.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Interacciones Huésped-Patógeno , Mariposas Nocturnas/metabolismo , Péptido Hidrolasas/metabolismo , Pseudomonas aeruginosa/enzimología , Animales , Hemolinfa/metabolismo , Larva/metabolismo , Larva/microbiología , Mariposas Nocturnas/microbiología
9.
Acta Biochim Pol ; 67(3): 319-326, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940448

RESUMEN

The insect immune system is responsible for maintaining the homeostasis of organisms. If the pathogen is able to breach the defensive barriers of the host, cellular and humoral mechanisms are triggered. Initiation of effective defence response is possible thanks to pathogen-associated molecular patterns, among which peptidoglycan recognition proteins play a prominent role. They recognize pathogen-associated molecular patterns and some of them also have enzymatic activity. The main aim of peptidoglycan recognition proteins is to activate pathways regulating the synthesis of immune peptides. Some of the peptidoglycan recognition proteins are involved in the phagocytosis process, activation of the prophenoloxidase cascade, and regulation of the xenophagy process. The structural diversity and high specificity of peptidoglycan recognition proteins suggests that they can serve many previously unknown functions in insect's systemic response.


Asunto(s)
Proteínas Portadoras/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Proteínas de Insectos/metabolismo , Insectos/inmunología , Animales , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Peptidoglicano/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
10.
Pathog Dis ; 78(9)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32970818

RESUMEN

The greater wax moth Galleria mellonella is an invertebrate that is increasingly being used in scientific research. Its ease of reproduction, numerous offspring, short development cycle, and finally, its known genome and immune-related transcriptome provide a convenient research model for investigation of insect immunity at biochemical and molecular levels. Galleria immunity, consisting of only innate mechanisms, shows adaptive plasticity, which has recently become the subject of intensive scientific research. This insect serves as a mini host in studies of the pathogenicity of microorganisms and in vivo tests of the effectiveness of single virulence factors as well as new antimicrobial compounds. Certainly, the Galleria mellonella species deserves our attention and appreciation for its contribution to the development of research on innate immune mechanisms. In this review article, we describe the biology of the greater wax moth, summarise the main advantages of using it as a model organism and present some of the main techniques facilitating work with this insect.


Asunto(s)
Antiinfecciosos/farmacología , Inmunidad , Infecciones/microbiología , Larva/microbiología , Larva/fisiología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/fisiología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Infecciones/tratamiento farmacológico , Estadios del Ciclo de Vida , Virulencia
11.
Subcell Biochem ; 94: 81-121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189297

RESUMEN

The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.


Asunto(s)
Antibacterianos/inmunología , Antibacterianos/metabolismo , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Insectos/inmunología , Péptidos/inmunología , Péptidos/metabolismo , Animales , Hemolinfa/inmunología , Hemolinfa/metabolismo , Insectos/microbiología
12.
J Invertebr Pathol ; 170: 107327, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31945326

RESUMEN

The immune response of Galleria mellonella to injection with non-lethal and lethal dosages of Candida albicans was compared. Larvae infected with the non-lethal dosage (2 × 104 cells/larva) did not show significant morphological changes, while those infected with the lethal dosage (2 × 105 cells/larva) showed inhibition of motility and cocoon formation and became darker around the area of injection after 24 h. While the administration of the lower dosage caused approx. 5- and 20-fold induction of genes for gallerimycin and galiomycin, respectively, the injection with the higher dosage induced approx. 25 and 120-fold expression of the respective genes. Similar differences were obtained for the insect metalloproteinase inhibitor (IMPI) and hemolin gene transcripts. The relatively low level of immune gene expression was confirmed by an assay of hemolymph antifungal activity, which was detected only in larvae infected with lethal dosage of C. albicans. Furthermore, greater amounts of immune-inducible peptides were detected in the hemolymph extracts in the same group of larvae. The stronger humoral immune response was not correlated with survival. Phenol oxidase (PO) activity was induced only in the hemolymph of larvae infected with the non-lethal dose; injection of the lethal dose resulted in strong inhibition of this enzyme after 24 h. We showed that PO is susceptible to regulation by immune priming with the non-lethal dose of C. albicans. The activity of this enzyme was enhanced in primed larvae at the time of re-injection. When both primed and non-primed larvae received 2 × 105 cells, the inhibition of PO was stronger in the primed group. G. mellonella infected with the lethal dose of C. albicans died despite the strong induction of humoral defence mechanisms. The priming-enhanced activity of PO was correlated with increased resistance to subsequent infection.


Asunto(s)
Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Inmunidad Innata , Mariposas Nocturnas/inmunología , Animales , Relación Dosis-Respuesta Inmunológica , Mariposas Nocturnas/microbiología
13.
Insect Sci ; 27(5): 1079-1089, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31245909

RESUMEN

The filamentous fungus Beauveria bassiana is a natural pathogen of the greater wax moth Galleria mellonella. Infection with this fungus triggered systemic immune response in G. mellonella; nevertheless, the infection was lethal if spores entered the insect hemocel. We observed melanin deposition in the insect cuticle and walls of air bags, while the invading fungus interrupted tissue continuity. We have shown colonization of muscles, air bags, and finally colonization and complete destruction of the fat body-the main organ responsible for the synthesis of defense molecules in response to infection. This destruction was probably not caused by simple fungal growth, because the fat body was not destroyed during colonization with a human opportunistic pathogen Candida albicans. This may mean that the infecting fungus is able to destroy actively the insect's fat body as part of its virulence mechanism. Finally, we were unable to reduce the extremely high virulence of B. bassiana against G. mellonella by priming of larvae with thermally inactivated fungal spores.


Asunto(s)
Beauveria/fisiología , Interacciones Huésped-Patógeno , Mariposas Nocturnas/microbiología , Animales , Larva/crecimiento & desarrollo , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo
14.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118554, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31518597

RESUMEN

The generally accepted model of ricin intoxication assumes that direct inactivation of ribosomes by depurination of a specific adenine residue within the sarcin-ricin-loop (SRL) on the 60S ribosomal subunit is a major source of its toxicity. The model proposes that SRL depurination leads to protein synthesis inhibition, evoking ribotoxic stress with concomitant induction of numerous metabolic pathways, which lead to cell death. However, the direct relationship between the depurination and its impact on the translational machinery in vivo has never been satisfactorily explained. In this work, we approached a long-standing question about the influence of SRL depurination on the functioning of the translational machinery in vivo. We have shown that an already low level of depurinated ribosomes exert an effect on cell metabolism, indicating that minute modification within the ribosomal pool is sufficient to elicit a toxic effect. Importantly, depurination does not affect notably any particular step of translation, and translational slowdown caused by ricin is not a direct consequence of depurination and cannot be considered as the sole source of cell death. Instead, SRL depurination in a small fraction of ribosomes blocks cell cycle progression with no effect on cell viability. In this work, we have provided a comprehensive picture of the impact of SRL depurination on the translational apparatus in vivo. We propose that ribosomes with depurinated SRL represent a small imprinted ribosomal pool, which generates a specific signal for the cell to halt the cell cycle.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/metabolismo , Ricina/metabolismo , Ricina/toxicidad , Saccharomyces cerevisiae/metabolismo , Supervivencia Celular/efectos de los fármacos , Procesamiento Proteico-Postraduccional , ARN Ribosómico/genética , Saccharomyces cerevisiae/citología
15.
J Insect Physiol ; 117: 103903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31233768

RESUMEN

Insects are able to develop enhanced resistance in response to repeated infection. This phenomenon is called immune priming. In this work, so-called "primed" Galleria mellonella larvae were re-infected with a lethal dose of Candida albicans 48 h after injection of a non-lethal dose, while "non-primed" larvae were infected only with a lethal dose. The increased resistance of the primed larvae correlated with a slower rate of body colonisation by the fungus. Changes in the protein profiles were detected in the whole hemolymph of the primed insects. The analysis of low-molecular weight proteins and peptides obtained with the use of three different organic solvents and comparative quantitative HPLC analysis thereof showed that the primed larvae did not have higher amounts of any infection-inducible polypeptides than the non-primed larvae. Moreover, electrophoresis of low-molecular weight polypeptides revealed an even lower level of immune-induced peptides in the primed larvae than in the non-primed ones. Furthermore, the defence activity of larval hemolymph, i.e. the antifungal, antibacterial, and lysozyme-type activity, was up-regulated in the primed larvae at the time of re-infection and, consequently, at the early time points after the infection with the lethal dose. Twenty four hours after the infection, these parameters were equally high in the non-primed and primed larvae. Accordingly, at the time of the injection of the lethal dose, certain immune-inducible genes were up-regulated. However, 24 h after the infection with the lethal dose, their expression in both groups was incomparably higher than at the time of the infection and, in most cases, it was as high in the primed larvae as in the non-primed ones. We found that only anti yeast-like activity was enhanced 24 h after the re-infection. This correlated with results obtained by testing the priming effect in heterologous systems: the primed animals did not exhibit higher resistance to the other pathogens tested.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Mariposas Nocturnas/inmunología , Animales , Candida albicans , Larva/inmunología
16.
Genes (Basel) ; 8(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244767

RESUMEN

Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains several regulatory motifs, including inverted repeats (IRs) of different lengths. So far, the role of these motifs in the regulation of rosR transcription has not been elucidated in detail. In this study, we performed a functional analysis of these motifs using a set of transcriptional rosR-lacZ fusions that contain mutations in these regions. The levels of rosR transcription for different mutant variants were evaluated in R. leguminosarum using both quantitative real-time PCR and ß-galactosidase activity assays. Moreover, the stability of wild type rosR transcripts and those with mutations in the regulatory motifs was determined using an RNA decay assay and plasmids with mutations in different IRs located in the 5'-untranslated region of the gene. The results show that transcription of rosR undergoes complex regulation, in which several regulatory elements located in the upstream region and some regulatory proteins are engaged. These include an upstream regulatory element, an extension of the -10 element containing three nucleotides TGn (TGn-extended -10 element), several IRs, and PraR repressor related to quorum sensing.

17.
J Invertebr Pathol ; 149: 87-96, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28803980

RESUMEN

The insect immune system relies on innate mechanisms only. However, there is an increasing number of data reporting that previous immune challenge with microbial elicitors or a low number of microorganisms can modulate susceptibility after subsequent lethal infection with the same or different pathogen. This phenomenon is called immune priming. Its biochemical and molecular mechanisms remain unravelled. Here we present that Galleria mellonella larvae that survived infection induced by intrahemocelic injection of a low dose of Bacillus thuringiensis were more resistant to re-injection of a lethal dose of the same bacteria but not other bacteria and fungi tested. This correlated with enhanced activity detected in full hemolymph as well as in separated hemolymph polypeptides. In addition, we observed differences in the hemolymph protein pattern between primed and non-primed larvae after infection with the lethal dose of B. thuringiensis. Expression of genes encoding inducible defence molecules was not enhanced in the primed larvae after the infection with the lethal dose of B. thuringiensis. It is likely that priming affects the turnover of immune related hemolymph proteins; hence, upon repeated contact, the immune response may be more ergonomic.


Asunto(s)
Bacillus thuringiensis , Hemolinfa/inmunología , Inmunidad Humoral , Larva/inmunología , Mariposas Nocturnas/inmunología , Animales , Hemolinfa/microbiología , Larva/microbiología , Mariposas Nocturnas/microbiología
18.
J Therm Biol ; 68(Pt A): 96-103, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28689727

RESUMEN

This mini-review summarizes the recent knowledge concerning the role of temperature in the immune response of insects. The heat-shock is described as a common phenomenon in both homotherms and poikilotherms, and the role of heat-shock proteins in innate immunity is recalled taking into account its evolutionary aspects. Similar to homothermic animals, which show a febrile reaction to infection, poikilothermic invertebrates such as insects develop behavioural fever as part of their immune response. It can be elicited not only by the presence of the pathogen itself but also by injection of immune stimulators i.e. components of the microbial cell wall. In analogy to fever in homotherms, this process seems to be regulated by the prostaglandin/eicosanoid biosynthesis pathway. The positive effects of temperature change on insect immunity are presented in the paper.


Asunto(s)
Insectos/inmunología , Temperatura , Animales , Temperatura Corporal , Inmunidad Innata/fisiología
19.
Acta Biochim Pol ; 64(2): 273-278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399190

RESUMEN

The inducible metalloproteinase inhibitor (IMPI) discovered in Galleria mellonella is currently the only specific inhibitor of metalloproteinases found in animals. Its role is to inhibit the activity of metalloproteinases secreted by pathogenic organisms as virulence factors to degrade immune-relevant polypeptides of the infected host. This is a good example of an evolutionary arms race between the insect hosts and their natural pathogens. In this report, we analyze the expression of a gene encoding an inducible metalloproteinase inhibitor (IMPI) in fat bodies of the greater wax moth larvae Galleria mellonella infected with an entomopathogenic fungus Beauveria bassiana. We have used a natural infection, i.e. covering larval integument with fungal aerospores, as well as injection of fungal blastospores directly into the larval hemocel. We compare the expression of IMPI with the expression of genes encoding proteins with fungicidal activity, gallerimycin and galiomycin, whose expression reflects the stimulation of Galleria mellonella defense mechanisms. Also, gene expression is analyzed in the light of survival of animals after spore injection.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Proteínas de Insectos/biosíntesis , Mariposas Nocturnas/genética , Animales , Beauveria/patogenicidad , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/microbiología , Regulación de la Expresión Génica , Hemolinfa/enzimología , Hemolinfa/microbiología , Proteínas de Insectos/genética , Larva/enzimología , Larva/microbiología , Metaloproteasas/antagonistas & inhibidores , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/microbiología
20.
Postepy Biochem ; 63(4): 269-276, 2017.
Artículo en Polaco | MEDLINE | ID: mdl-29374428

RESUMEN

Proteolytic enzymes and their inhibitors are crucial in host-pathogen interaction. Metalloproteases secreted by pathogenic microbes play an important role in destroying not only host tissues but also their immune proteins. Metalloproteinase inhibitors, in contrast, may serve as effective therapeutic agents, which is especially important because of the increasing number of microorganisms resistant to known antibiotics. The role of metalloproteases produced by the bacterium Pseudomonas aeruginosa in the colonization of the host organism is described. Attention has also been paid to the role of inhibitors of these enzymes in defense responses and underlined their potential role in inhibiting the development of infection.


Asunto(s)
Antibacterianos/farmacología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/metabolismo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Antibacterianos/uso terapéutico , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Proteolisis/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...