Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041228

RESUMEN

This study investigates the factors modulating the reactivity of 5'-deoxyadenosyl (5'dAdo˙) radical, a potent hydrogen atom abstractor that forms in the active sites of radical SAM enzymes and that otherwise undergoes a rapid self-decay in aqueous solution. Here, we compare hydrogen atom abstraction (HAA) reactions between native substrates of radical SAM enzymes and 5'dAdo˙ in aqueous solution and in two enzymatic microenvironments. With that we reveal that HAA efficiency of 5'dAdo˙ is due to (i) the in situ formation of 5'dAdo˙ in a pre-ordered complex with a substrate, which attenuates the unfavorable effect of substrate:5'dAdo˙ complex formation, and (ii) the prevention of the conformational changes associated with self-decay by a tight active-site cavity. The enzymatic cavity, however, does not have a strong effect on the HAA activity of 5'dAdo˙. Thus, we performed an analysis of in-water HAA performed by 5'dAdo˙ based on a three-component thermodynamic model incorporating the diagonal effect of the free energy of reaction, and the off-diagonal effect of asynchronicity and frustration. To this aim, we took advantage of the straightforward relationship between the off-diagonal thermodynamic effects and the electronic-structure descriptor - the redistribution of charge between the reactants during the reaction. It allows to access HAA-competent redox and acidobasic properties of 5'dAdo˙ that are otherwise unavailable due to its instability upon one-electron reduction and protonation. The results show that all reactions feature a favourable thermodynamic driving force and tunneling, the latter of which lowers systematically barriers by ∼2 kcal mol-1. In addition, most of the reactions experience a favourable off-diagonal thermodynamic contribution. In HAA reactions, 5'dAdo˙ acts as a weak oxidant as well as a base, also 5'dAdo˙-promoted HAA reactions proceed with a quite low degree of asynchronicity of proton and electron transfer. Finally, the study elucidates the crucial and dual role of asynchronicity. It directly lowers the barrier as a part of the off-diagonal thermodynamic contribution, but also indirectly increases the non-thermodynamic part of the barrier by presumably controlling the adiabatic coupling between proton and electron transfer. The latter signals that the reaction proceeds as a hydrogen atom transfer rather than a proton-coupled electron transfer.

2.
Chem Sci ; 15(22): 8459-8471, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846394

RESUMEN

Here, we demonstrate that the relationship between reactivity and thermodynamics in radical ligand transfer chemistry can be understood if this chemistry is dissected as concerted ion-electron transfer (cIET). Namely, we investigate radical ligand transfer reactions from the perspective of thermodynamic contributions to the reaction barrier: the diagonal effect of the free energy of the reaction, and the off-diagonal effect resulting from asynchronicity and frustration, which we originally derived from the thermodynamic cycle for concerted proton-electron transfer (cPET). This study on the OH transfer reaction shows that the three-component thermodynamic model goes beyond cPET chemistry, successfully capturing the changes in radical ligand transfer reactivity in a series of model FeIII-OH⋯(diflouro)cyclohexadienyl systems. We also reveal the decisive role of the off-diagonal thermodynamics in determining the reaction mechanism. Two possible OH transfer mechanisms, in which electron transfer is coupled with either OH- and OH+ transfer, are associated with two competing thermodynamic cycles. Consequently, the operative mechanism is dictated by the cycle yielding a more favorable off-diagonal effect on the barrier. In line with this thermodynamic link to the mechanism, the transferred OH group in OH-/electron transfer retains its anionic character and slightly changes its volume in going from the reactant to the transition state. In contrast, OH+/electron transfer develops an electron deficiency on OH, which is evidenced by an increase in charge and a simultaneous decrease in volume. In addition, the observations in the study suggest that an OH+/electron transfer reaction can be classified as an adiabatic radical transfer, and the OH-/electron transfer reaction as a less adiabatic ion-coupled electron transfer.

3.
Chemistry ; 28(18): e202104106, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34986268

RESUMEN

Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.


Asunto(s)
Dioxigenasas , Ácidos Cetoglutáricos , Dioxigenasas/química , Compuestos Ferrosos/química , Hidroxilación , Ácidos Cetoglutáricos/metabolismo , Unión Proteica
4.
Chemistry ; 27(6): 2196-2211, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33141974

RESUMEN

Clavaminic acid synthase from Streptomyces clavuligerus is an FeII /2-oxoglutarate-dependent dioxygenase, crucial for the biosynthesis of the ß-lactamase inhibitor clavulanic acid. It catalyses three consecutive oxidative reactions, that is, hydroxylation, cyclisation and desaturation, in a single binding cavity. As follows from the results of this QM/MM study, CAS versatility and selectivity depends on the binding cavity, which interplays differently with the substrate for each reaction. The enzyme-substrate interactions affect the substrate's ability to re-position during the reaction, either constraining it in its primary position, which impedes processes other than oxygen rebound, or allowing change, which facilitates desaturation. This differential effect originates from two aspartate residues, which strongly interact with the guanidine group of the hydroxylation substrate and stabilise the orientation of the molecule. These residues interact less effectively with the smaller amine group of the desaturation substrate(s), aiding their re-positioning and the subsequent formation of a double bond.


Asunto(s)
Oxigenasas de Función Mixta/química , Catálisis , Oxigenasas de Función Mixta/metabolismo , Streptomyces , Especificidad por Sustrato
5.
Int J Biol Macromol ; 163: 718-729, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32650010

RESUMEN

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times larger than necessary to accommodate a substrate (thebaine or oripavine) molecule. Since so far no crystal structures have been obtained for enzyme-substrate complex, which is necessary to explain the enzyme regiospecificity towards the C6-bound methoxy group, in this work we used computational methods and multi-parametric surface plasmon resonance measurements to elucidate the most likely structure of this complex and the reaction mechanism starting therefrom. Results of simulations and experiments unanimously indicate that the enzyme-substrate complex of T6ODM has a 1:2 stoichiometry. The key residues responsible for substrate binding are: Val-128, Glu-133, Met-150 and Agr-219 for the substrate in the distal position, and Asp-144, Leu-235 and Leu-353 for the proximal substrate molecule. QM/MM and DFT calculations show that the oxo ligand is bound trans to His-295 and the enzyme catalyzes hydroxylation of the C6-bound methoxy group according to the established rebound mechanism. The final stage of the demethylation reaction, which includes deformylation and enol-keton tautomerization steps, is most likely catalysed by water molecules and takes place in the solvent.


Asunto(s)
Oxidorreductasas O-Demetilantes/química , Tebaína/química , Biocatálisis , Teoría Funcional de la Densidad , Hidroxilación , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Dalton Trans ; 49(14): 4454-4469, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32182320

RESUMEN

Hyoscyamine 6ß-hydroxylase (H6H) is a bifunctional non-heme 2-oxoglutarate/Fe2+-dependent dioxygenase that catalyzes the two final steps in the biosynthesis of scopolamine. Based on high resolution crystal structures of H6H from Datura metel, detailed information on substrate binding was obtained that provided insights into the onset of the enzymatic process. In particular, the role of two prominent residues was revealed - Glu-116 that interacts with the tertiary amine located on the hyoscyamine tropane moiety and Tyr-326 that forms CH-π hydrogen bonds with the hyoscyamine phenyl ring. The structures were used as the basis for QM/MM calculations that provided an explanation for the regioselectivity of the hydroxylation reaction on the hyoscyamine tropane moiety (C6 vs. C7) and quantified contributions of active site residues to respective barrier heights.


Asunto(s)
Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Teoría Cuántica , Escopolamina/metabolismo , Biocatálisis , Hidroxilación , Modelos Moleculares , Conformación Molecular , Escopolamina/química , Estereoisomerismo
7.
J Biol Inorg Chem ; 23(5): 795-808, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29876666

RESUMEN

The Fe(II)/2-oxoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans catalyses two pivotal steps in the synthesis of quinolone antibiotic 4'-methoxyviridicatin, i.e., desaturation and epoxidation of a benzodiazepinedione. The previous experimental results signal that, during the desaturation reaction, hydrogen atom transfer (HAT) from the benzylic carbon atom (C10) is a more likely step to initiate the reaction than the alternative HAT from the ring moiety (C3 atom). To unravel the origins of this regioselectivity and to explain why the observed reaction is desaturation and not the "default" hydroxylation, we performed a QM/MM study on the reaction catalysed by AsqJ. Herein, we report results that complement the experimental findings and suggest that HAT at the C10 position is the preferred reaction due to favourable interactions between the substrate and the binding cavity that compensate for the relatively high intrinsic barrier associated with the process. For the resultant radical intermediate, the desaturation/hydroxylation selectivity is governed by electronic properties of the reactants, i.e., the energy gap between the orbital that hosts the unpaired electron and the sigma orbital for the C-H bond as well as the gap between the orbitals mixing in transition state structures for each elementary step. Regiospecificity of the AsqJ dehydrogenation reaction is dictated by substrate-protein interactions. 82 × 44 mm (300 × 300 dpi).


Asunto(s)
Dioxigenasas/metabolismo , Teoría Cuántica , Sustitución de Aminoácidos , Aspergillus nidulans/enzimología , Catálisis , Dioxigenasas/química , Hidrógeno/química , Hidroxilación , Simulación de Dinámica Molecular , Especificidad por Sustrato , Termodinámica
8.
J Struct Biol ; 202(3): 229-235, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29408320

RESUMEN

Thebaine 6-O-demethylase (T6ODM) from Papaver somniferum (opium poppy), which belongs to the non-heme 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODD) family, is a key enzyme in the morphine biosynthesis pathway. Initially, T6ODM was characterized as an enzyme catalyzing O-demethylation of thebaine to neopinone and oripavine to morphinone. However, the substrate range of T6ODM was recently expanded to a number of various benzylisoquinoline alkaloids. Here, we present crystal structures of T6ODM in complexes with 2-oxoglutarate (T6ODM:2OG, PDB: 5O9W) and succinate (T6ODM:SIN, PDB: 5O7Y). Both metal and 2OG binding sites display similarity to other proteins from the ODD family, but T6ODM is characterized by an exceptionally large substrate binding cavity, whose volume can partially explain the promiscuity of this enzyme. Moreover, the size of the cavity allows for binding of multiple molecules at once, posing a question about the substrate-driven specificity of the enzyme.


Asunto(s)
Oxidorreductasas O-Demetilantes/ultraestructura , Papaver/enzimología , Tebaína/química , Cristalografía por Rayos X , Ácidos Cetoglutáricos/química , Metilación , Morfina/biosíntesis , Morfina/química , Oxidorreductasas O-Demetilantes/química , Papaver/química , Ácido Succínico/química
9.
J Biol Inorg Chem ; 21(4): 475-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27170159

RESUMEN

Quercetin 2,3-dioxygenase (QDO) is an enzyme which accepts various transition metal ions as cofactors, and cleaves the heterocyclic ring of quercetin with consumption of dioxygen and release of carbon monoxide. QDO from B. subtilis that binds Mn(II) displays an unprecedented nitroxygenase activity, whereby nitroxyl (HNO) is incorporated into quercetin cleavage products instead of dioxygen. Interestingly, the reaction proceeds with high regiospecificity, i.e., nitrogen and oxygen atoms of HNO are incorporated into specific fragments of the cleavage product. A nonenzymatic base-catalyzed reaction, which occurs in pH above 7.5, yields the same reaction products. Herein, we report results of quantum chemical studies on the mechanisms of the nitroxygenase reaction of Mn-QDO. Density functional method with dispersion correction (B3LYP-D3) was applied to the Mn-QDO active site model and the reactants of the nonenzymatic reaction. Co(II)- and Fe(II)-variants of the active site were also considered. Analysis of reaction energy profiles suggests that the regiospecificity of the reaction is an inherent property of the reactants, whereas the unique reactivity of Mn-QDO, as opposed to Co- or Fe-QDO that do not catalyze nitroxygenation, stems from weak HNO binding and lack of strong preference for coordination of HNO through the nitrogen atom. Moreover, the enzyme activates quercetin through deprotonation and the proton acceptor-Glu69 needs to reorient for the reaction to proceed.


Asunto(s)
Dioxigenasas/química , Dioxigenasas/metabolismo , Oxigenasas/metabolismo , Teoría Cuántica , Bacillus subtilis/enzimología , Estructura Molecular , Oxigenasas/química , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA