Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Front Physiol ; 15: 1363708, 2024.
Article En | MEDLINE | ID: mdl-38638279

Osteoporosis after bariatric surgery is an increasing health concern as the rate of bariatric surgery has risen. In animal studies mimicking bariatric procedures, bone disease, together with decreased serum levels of Ca2+, Mg2+ and the gastric hormone Ghrelin were described. Ghrelin regulates metabolism by binding to and activating the growth hormone secretagogue receptor (GHSR) which is also expressed in the kidney. As calcium and magnesium are key components of bone, we tested the hypothesis that Ghrelin-deficiency contributes to osteoporosis via reduced upregulation of the renal calcium channel TRPV5 and the heteromeric magnesium channel TRPM6/7. We expressed GHSR with TRPV5 or TRPM6/7 channel in HEK293 cells and treated them with purified Ghrelin. Whole-cell current density was analyzed by patch-clamp recording. Nephron-specific gene expression was performed by tubular microdissection followed by qPCR in wild-type (WT) mice, and immunofluorescent imaging of GHSR-eGFP mice. Tubular magnesium homeostasis was analyzed in GHSR-null and WT mice at baseline and after caloric restriction. After Ghrelin exposure, whole-cell current density did not change for TRPV5 but increased for TRPM6/7 in a dose-dependent fashion. Applying the Ghrelin-mimetic (D-Trp7, Ala8,D-Phe10)-α-MSH (6-11) amide without and with the GHSR antagonist (D-Lys3)-GHRP6, we confirmed the stimulatory role of Ghrelin towards TRPM6/7. As GHSR initiates downstream signaling via protein kinase A (PKA), we found that the PKA inhibitor H89 abrogated TRPM6/7 stimulation by Ghrelin. Similarly, transfected Gαs, but not the Gαs mutant Q227L, nor Gαi2, Gαq, or Gα13 upregulated TRPM6/7 current density. In microdissected TALs and DCTs similar levels of GHSR mRNA were detected. In contrast, TRPM6 mRNA was expressed in the DCT and also detected in the TAL at 25% expression compared to DCT. Immunofluorescent studies using reporter GHSR-eGFP mice showed a strong eGFP signal in the TAL but surprisingly displayed no eGFP signal in the DCT. In 3-, 6-, and 9-month-old GHSR-null and WT mice, baseline serum magnesium was not significantly different, but 24-h urinary magnesium excretion was elevated in 9-month-old GHSR-null mice. In calorically restricted GHSR-null mice, we detected excess urinary magnesium excretion and reduced serum magnesium levels compared to WT mice. The kidneys from calorically restricted WT mice showed upregulated gene expression of magnesiotropic genes Hnf1b, Cldn-16, Cldn-19, Fxyd-2b, and Parvalbumin compared to GHSR-null mice. Our in vitro studies show that Ghrelin stimulates TRPM6/7 via GHSR and Gαs-PKA signaling. The murine studies are consistent with Ghrelin-GHSR signaling inducing reduced urinary magnesium excretion, particularly in calorically restricted mice when Ghrelin levels are elevated. This effect may be mediated by Ghrelin-upregulation of TRPM6 in the TAL and/or upregulation of other magnesiotropic genes. We postulate that rising Ghrelin levels with hunger contribute to increased renal Mg2+ reabsorption to compensate for lack of enteral Mg2+ uptake.

3.
Pediatr Nephrol ; 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37930417

Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.

4.
Adv Kidney Dis Health ; 30(2): 148-163, 2023 03.
Article En | MEDLINE | ID: mdl-36868730

Magnesium (Mg2+) is the second most common intracellular cation and the fourth most abundant element on earth. However, Mg2+ is a frequently overlooked electrolyte and often not measured in patients. While hypomagnesemia is common in 15% of the general population, hypermagnesemia is typically only found in preeclamptic women after Mg2+ therapy and in patients with ESRD. Mild to moderate hypomagnesemia has been associated with hypertension, metabolic syndrome, type 2 diabetes mellitus, CKD, and cancer. Nutritional Mg2+ intake and enteral Mg2+ absorption are important for Mg2+ homeostasis, but the kidneys are the key regulators of Mg2+ homeostasis by limiting urinary excretion to less than 4% while the gastrointestinal tract loses over 50% of the Mg2+ intake in the feces. Here, we review the physiological relevance of Mg2+, the current knowledge of Mg2+ absorption in the kidneys and the gut, the different causes of hypomagnesemia, and a diagnostic approach on how to assess Mg2+ status. We highlight the latest discoveries of monogenetic conditions causing hypomagnesemia, which have enhanced our understanding of tubular Mg2+ absorption. We will also discuss external and iatrogenic causes of hypomagnesemia and advances in the treatment of hypomagnesemia.


Diabetes Mellitus, Type 2 , Water-Electrolyte Imbalance , Humans , Female , Magnesium , Electrolytes , Homeostasis , Memory Disorders
5.
Pediatr Med ; 52022 May.
Article En | MEDLINE | ID: mdl-36325202

Background and Objective: While the role of the renin-angiotensin-aldosterone system (RAAS) in the development of hypertension is well known, the significance and contribution of low renin hypertension is often overlooked. RAAS stimulation results in more tubular absorption of sodium and water along the nephron, contributing to a higher circulating vascular volume. In addition, members of the RAAS system, such as angiotensin II, have direct effects on vascular vasoconstriction, the heart, aldosterone synthesis in the adrenal glands, the sympathetic nervous system, and the central nervous system. This has resulted in a line of antihypertensive therapeutics targeting RAAS with angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and renin inhibitors, which prevent conversion of angiotensinogen to angiotensin. While general practitioners and nephrologists are well aware of the causes and the long-term consequences of elevated renin and aldosterone levels, the opposite situation with low renin and/or low aldosterone levels is frequently underappreciated. The objective of this review is to provide insight to the less common forms of hyporeninemic hypertension. Methods: We searched the PubMed online library for keywords related to hyporeninemic hypertension and focused on the pediatric population. For pathophysiology we focused on literature of the last 5 years. Key Content and Findings: The low renin and aldosterone levels may be indicators of inherited (especially when associated with hypokalemia), monogenic forms of hypertension stimulating excessive tubular sodium and water absorption which subsequently results in plasma volume expansion and hypertension. These forms of hypertension require frequently specific forms of therapy. This underlines the importance of the practitioner to be familiar with these rare diseases. Conclusions: In this review article, we outline the different forms of hypertension characterized by low renin/low aldosterone and low renin/high aldosterone levels, how to diagnose these forms of hypertension, and how to treat them.

6.
J Am Soc Nephrol ; 33(3): 547-564, 2022 03.
Article En | MEDLINE | ID: mdl-35022312

BACKGROUND: Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal Ca2+ wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. METHODS: We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), as determined by patch clamp in HEK293 cells. RESULTS: Gentamicin increased urinary Ca2+ excretion in wild-type mice after acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/- mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and chronic gentamicin administration downregulated distal nephron Ca2+ transporters. CONCLUSIONS: Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into Ca2+ wasting in patients treated with gentamicin.


Gentamicins , Receptors, Calcium-Sensing , Animals , Calcium/metabolism , Calcium Channels/metabolism , Carrier Proteins , Claudins , Gentamicins/pharmacology , HEK293 Cells , Humans , Mice , Rabbits , Receptors, Calcium-Sensing/genetics , TRPV Cation Channels/genetics
7.
Pediatr Nephrol ; 37(6): 1415-1418, 2022 06.
Article En | MEDLINE | ID: mdl-34854955

BACKGROUND: Cobalamin C (cblC), a vitamin B12 processing protein, plays a crucial role in metabolism for the conversion of homocysteine to methionine and methylmalonyl-CoA to succinyl-CoA. CblC deficiency, an inborn error of cobalamin processing, is a rare cause of atypical hemolytic-uremic syndrome (aHUS) and results in hyperhomocysteinemia and methylmalonic aciduria. Both substances are thought to contribute to thrombotic microangiopathy (TMA) in cblC deficiency patients. However, the roles of homocysteine and methylmalonic acid (MMA) in these patients remain unclear. We want to shed more light on the contributions of homocysteine and MMA levels as contributing factors for thrombotic microangiopathy (TMA)/aHUS by a follow-up of a cblC deficiency patient over 6 years. CASE DIAGNOSIS: A 27-day-old Hispanic female presented with abnormal C3-carnitine on her newborn screen, poor feeding, decreased activity, and oligouria. She was diagnosed with cblC deficiency after laboratory results revealed elevated serum homocysteine, and serum MMA along with genetic testing showing a homozygous pathogenic frameshift variant in MMACHC. The patient developed aHUS and acute kidney injury (AKI), which resolved after appropriate therapy. Over 6 years, she continued to have normal kidney function with no thrombocytopenia despite persistently elevated homocysteine and MMA levels. CONCLUSION: We question the roles of homocysteine and MMA as causative of aHUS/TMA in cblC deficiency as they remained elevated during follow-up but did not result in aHUS/TMA or AKI. Hyperhomocysteinemia and/or MMA caused by other metabolic diseases do not result in aHUS/TMA or AKI. This suggests that other nephrotoxic factors may trigger aHUS/TMA in cblC patients.


Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Hyperhomocysteinemia , Thrombotic Microangiopathies , Vitamin B 12 Deficiency , Acute Kidney Injury/etiology , Amino Acid Metabolism, Inborn Errors , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Female , Homocysteine , Humans , Hyperhomocysteinemia/complications , Infant, Newborn , Kidney/pathology , Methylmalonic Acid , Oxidoreductases/genetics , Thrombotic Microangiopathies/pathology , Vitamin B 12 , Vitamin B 12 Deficiency/complications , Vitamin B 12 Deficiency/diagnosis
8.
Pediatr Nephrol ; 37(5): 933-946, 2022 05.
Article En | MEDLINE | ID: mdl-34021396

Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1ß mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.


Gout , Polycystic Kidney Diseases , Renal Insufficiency, Chronic , Adolescent , Adult , Child , Female , Humans , Male , Mutation , Uromodulin/genetics
11.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Article En | MEDLINE | ID: mdl-32750457

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Anemia , Polycystic Kidney Diseases , Adult , Child , Cohort Studies , Female , Humans , Male , Mutation , Polycystic Kidney Diseases/genetics , Renin/genetics , Young Adult
13.
Curr Opin Nephrol Hypertens ; 28(5): 481-489, 2019 09.
Article En | MEDLINE | ID: mdl-31205055

PURPOSE OF REVIEW: Uromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism. RECENT FINDINGS: UMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus. SUMMARY: With better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.


Minerals/metabolism , Uromodulin/physiology , Animals , Calcium/metabolism , Humans , Hypertension/etiology , Hypertension/metabolism , Ion Transport , Kidney Tubules/metabolism , Magnesium/metabolism , Renal Insufficiency, Chronic/etiology , Uromodulin/blood
14.
J Biol Chem ; 293(42): 16488-16502, 2018 10 19.
Article En | MEDLINE | ID: mdl-30139743

Up to 15% of the population have mild to moderate chronic hypomagnesemia, which is associated with type 2 diabetes mellitus, hypertension, metabolic syndrome, and chronic kidney disease. The kidney is the key organ for magnesium homeostasis, but our understanding of renal magnesium regulation is very limited. Uromodulin (UMOD) is the most abundant urinary protein in humans, and here we report that UMOD has a role in renal magnesium homeostasis. Umod-knockout (Umod-/-) mice excreted more urinary magnesium than WT mice and displayed up-regulation of genes promoting magnesium absorption. The majority of magnesium is absorbed in the thick ascending limb. However, both mouse strains responded similarly to the diuretic agent furosemide, indicating appropriate function of the thick ascending limb in the Umod-/- mice. Magnesium absorption is fine-tuned in the distal convoluted tubule (DCT) via the apical magnesium channel transient receptor potential melastatin 6 (TRPM6). We observed decreased apical Trpm6 staining in the DCT of Umod-/- mice. Applying biotinylation assays and whole-cell patch-clamp recordings, we found that UMOD enhances TRPM6 cell-surface abundance and current density from the extracellular space. UMOD physically interacted with TRPM6 and thereby impaired dynamin-dependent TRPM6 endocytosis. WT mice fed a low-magnesium diet had an increased urinary UMOD secretion compared with the same mice on a regular diet. Our results suggest that increased urinary UMOD secretion in low-magnesium states reduces TRPM6 endocytosis and thereby up-regulates TRPM6 cell-surface abundance to defend against further urinary magnesium losses.


Homeostasis , Kidney/chemistry , Magnesium/metabolism , TRPM Cation Channels/metabolism , Uromodulin/physiology , Animals , Endocytosis , Furosemide/pharmacology , Humans , Kidney Tubules, Distal/metabolism , Magnesium/urine , Mice , Mice, Knockout , Uromodulin/genetics
15.
Am J Kidney Dis ; 72(4): 601-605, 2018 10.
Article En | MEDLINE | ID: mdl-30041877

In adults, membranous nephropathy is the second most common cause of nephrotic syndrome. In contrast, minimal change disease and focal segmental glomerulosclerosis constitute the most common forms of nephrotic syndrome in children, while membranous nephropathy accounts for <5% of cases. In adults, causes of membranous nephropathy include autoantibodies directed against phospholipase A2 receptor and thrombospondin type 1 containing 7A, various infections, environmental toxicities, autoimmune disorders, malignancies, and other secondary forms. The most common causes of secondary membranous nephropathy in children are infections, autoimmune diseases, and neoplasia. We discuss an unusual presentation of new-onset membranous nephropathy due to mercury toxicity in a 14-year-old male with reflux nephropathy. This case underscores the importance of a high index of suspicion for uncommon causes of nephrotic syndrome in pediatric patients with membranous nephropathy.


Environmental Exposure/adverse effects , Glomerulonephritis, Membranous/chemically induced , Glomerulonephritis, Membranous/therapy , Mercury/adverse effects , Nephrotic Syndrome/pathology , Adolescent , Biopsy, Needle , Disease Progression , Follow-Up Studies , Glomerulonephritis, Membranous/pathology , Humans , Immunohistochemistry , Male , Mercury Poisoning/complications , Nephrotic Syndrome/diagnostic imaging , Nephrotic Syndrome/therapy , Rare Diseases , Risk Assessment
16.
Sci Rep ; 8(1): 4170, 2018 03 08.
Article En | MEDLINE | ID: mdl-29520014

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n = 9) and negative (n = 7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


Alleles , High-Throughput Nucleotide Sequencing , Minisatellite Repeats , Mucin-1/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male
18.
J Am Soc Nephrol ; 27(11): 3447-3458, 2016 Nov.
Article En | MEDLINE | ID: mdl-27036738

Hypercalciuria is a major risk factor for nephrolithiasis. We previously reported that Uromodulin (UMOD) protects against nephrolithiasis by upregulating the renal calcium channel TRPV5. This channel is crucial for calcium reabsorption in the distal convoluted tubule (DCT). Recently, mutations in the gene encoding Mucin-1 (MUC1) were found to cause autosomal dominant tubulointerstitial kidney disease, the same disease caused by UMOD mutations. Because of the similarities between UMOD and MUC1 regarding associated disease phenotype, protein structure, and function as a cellular barrier, we examined whether urinary MUC1 also enhances TRPV5 channel activity and protects against nephrolithiasis. We established a semiquantitative assay for detecting MUC1 in human urine and found that, compared with controls (n=12), patients (n=12) with hypercalciuric nephrolithiasis had significantly decreased levels of urinary MUC1. Immunofluorescence showed MUC1 in the thick ascending limb, DCT, and collecting duct. Applying whole-cell patch-clamp recording of HEK cells, we found that wild-type but not disease mutant MUC1 increased TRPV5 activity by impairing dynamin-2- and caveolin-1-mediated endocytosis of TRPV5. Coimmunoprecipitation confirmed a physical interaction between TRPV5 and MUC1. However, MUC1 did not increase the activity of N-glycan-deficient TRPV5. MUC1 is characterized by variable number tandem repeats (VNTRs) that bind the lectin galectin-3; galectin-3 siRNA but not galectin-1 siRNA prevented MUC1-induced upregulation of TRPV5 activity. Additionally, MUC1 lacking VNTRs did not increase TRPV5 activity. Our results suggest that MUC1 forms a lattice with the N-glycan of TRPV5 via galectin-3, which impairs TRPV5 endocytosis and increases urinary calcium reabsorption.


Mucin-1/physiology , Mucin-1/urine , Nephrolithiasis/etiology , Nephrolithiasis/urine , TRPV Cation Channels/physiology , Calcium/analysis , Cells, Cultured , Female , Humans , Male , Middle Aged , Up-Regulation
19.
Kidney Int ; 88(4): 676-83, 2015 Oct.
Article En | MEDLINE | ID: mdl-25738250

Rare autosomal dominant tubulointerstitial kidney disease is caused by mutations in the genes encoding uromodulin (UMOD), hepatocyte nuclear factor-1ß (HNF1B), renin (REN), and mucin-1 (MUC1). Multiple names have been proposed for these disorders, including 'Medullary Cystic Kidney Disease (MCKD) type 2', 'Familial Juvenile Hyperuricemic Nephropathy (FJHN)', or 'Uromodulin-Associated Kidney Disease (UAKD)' for UMOD-related diseases and 'MCKD type 1' for the disease caused by MUC1 mutations. The multiplicity of these terms, and the fact that cysts are not pathognomonic, creates confusion. Kidney Disease: Improving Global Outcomes (KDIGO) proposes adoption of a new terminology for this group of diseases using the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' (ADTKD) appended by a gene-based subclassification, and suggests diagnostic criteria. Implementation of these recommendations is anticipated to facilitate recognition and characterization of these monogenic diseases. A better understanding of these rare disorders may be relevant for the tubulointerstitial fibrosis component in many forms of chronic kidney disease.


Gout , Hyperuricemia , Kidney Diseases , Nephrology/standards , Polycystic Kidney, Autosomal Dominant , Uromodulin/deficiency , Consensus , DNA Mutational Analysis , Genetic Predisposition to Disease , Gout/classification , Gout/diagnosis , Gout/genetics , Gout/therapy , Humans , Hyperuricemia/classification , Hyperuricemia/diagnosis , Hyperuricemia/genetics , Hyperuricemia/therapy , Kidney Diseases/classification , Kidney Diseases/diagnosis , Kidney Diseases/genetics , Kidney Diseases/therapy , Mutation , Phenotype , Polycystic Kidney, Autosomal Dominant/classification , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/therapy , Predictive Value of Tests , Terminology as Topic , Treatment Outcome , Uromodulin/classification , Uromodulin/genetics
20.
Curr Opin Pediatr ; 27(2): 201-11, 2015 Apr.
Article En | MEDLINE | ID: mdl-25635582

PURPOSE OF REVIEW: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most common genetic disorders causing end-stage renal disease (ESRD) in children and adolescents. NPHP is a genetically heterogenous disorder with 20 identified genes. NPHP occurs as an isolated kidney disease, but approximately 15% of NPHP patients have additional extrarenal symptoms affecting other organs [e.g. eyes, liver, bones and central nervous system (CNS)]. The pleiotropy in NPHP is explained by the finding that almost all NPHP gene products share expression in primary cilia, a sensory organelle present in most mammalian cells. If extrarenal symptoms are present in addition to NPHP, these disorders are classified as NPHP-related ciliopathies (NPHP-RC). This review provides an update about recent advances in the field of NPHP-RC. RECENT FINDINGS: The identification of novel disease-causing genes has improved our understanding of the pathomechanisms contributing to NPHP-RC. Multiple interactions between different NPHP-RC gene products have been published and outline the interconnectivity of the affected proteins and shared pathways. SUMMARY: The significance of recently identified genes for NPHP-RC is discussed and the complex role and interaction of NPHP proteins in ciliary function and cellular signalling pathways is highlighted.


Adaptor Proteins, Signal Transducing/metabolism , Cilia/pathology , Kidney Diseases, Cystic/congenital , Kidney Failure, Chronic/pathology , Kidney/pathology , Membrane Proteins/metabolism , Adolescent , Child , Cilia/physiology , Cytoskeletal Proteins , Genes, Recessive , Humans , Kidney Diseases, Cystic/complications , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/physiopathology , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/physiopathology , Mutation/genetics , Phenotype , Signal Transduction
...