Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(7): pgad231, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37497046

RESUMEN

The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro. The size of the droplets depends on the concentration of protein. MAP65 condensates are liquid at first and can gelate over time. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. The droplet size directly controls the number of projections in the microtubule asters, demonstrating that the MAP65 concentration can control the organization of microtubules. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate, returning the MAP65 molecules to solution. This work implies that there is an interplay between condensate formation from microtubule-associated proteins, microtubule organization, and condensate dissolution that could be important for the dynamics of intracellular organization.

2.
Nat Commun ; 14(1): 1374, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941245

RESUMEN

Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior. Here, we formulate a class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. The outcomes of this work could impact biomedical diagnostics by providing a fundamental basis for biomarker detection in biofluids.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Proteínas , Nanotecnología/métodos , Electricidad , Técnicas Biosensibles/métodos
3.
ACS Chem Biol ; 17(6): 1586-1597, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35613319

RESUMEN

Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Péptidos , Sitios de Unión , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Complejos Multienzimáticos/metabolismo , Péptidos/química , Unión Proteica
4.
J Phys Chem Lett ; 13(18): 4021-4028, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35485934

RESUMEN

Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Cinética , Ligandos , Péptidos , Unión Proteica
5.
Rejuvenation Res ; 24(6): 456-463, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841899

RESUMEN

A major limitation in aging research is the lack of reliable biomarkers to assess phenotypic changes with age or monitor response to antiaging interventions. This study investigates the role of intracellular ferrous iron (Fe2+) as a potential biomarker of senescence. Iron is known to accumulate in various tissues with age and recent studies have demonstrated that its level increases dramatically in senescent cells. The current techniques used to measure the accumulation of iron are cumbersome and only measure total iron not specific isotopes such as the redox reactive Fe2+. It is still to be determined whether the damaging form of iron (Fe2+) is specifically elevated in senescent cells. In this study, we assessed the potential use of a newly discovered Fe2+ reactive probe (SiRhoNox-1) for selective labeling of senescent cells in vitro. For this we have generated various senescent cell models and subjected them to SiRhoNox-1 labeling. Our results indicate that SiRhoNox-1 selectivity labels live senescent cells and was more specific and faster than current staining such as SA-ßGal or a derived fluorescent probe C12FDG. Together these findings suggest that SiRhoNox-1 may serve as a convenient tool to detect senescent cells based on their ferrous iron level.


Asunto(s)
Gerociencia , Hierro , Senescencia Celular , Fluorescencia , Oxidación-Reducción
6.
Biochem J ; 478(11): 2145-2161, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34032265

RESUMEN

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencias de Aminoácidos , Sitios de Unión , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Unión Proteica , Conformación Proteica
7.
Geroscience ; 43(2): 579-591, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33123847

RESUMEN

C60 is a potent antioxidant that has been reported to substantially extend the lifespan of rodents when formulated in olive oil (C60-OO) or extra virgin olive oil (C60-EVOO). Despite there being no regulated form of C60-OO, people have begun obtaining it from online sources and dosing it to themselves or their pets, presumably with the assumption of safety and efficacy. In this study, we obtain C60-OO from a sample of online vendors, and find marked discrepancies in appearance, impurity profile, concentration, and activity relative to pristine C60-OO formulated in-house. We additionally find that pristine C60-OO causes no acute toxicity in a rodent model but does form toxic species that can cause significant morbidity and mortality in mice in under 2 weeks when exposed to light levels consistent with ambient light. Intraperitoneal injections of C60-OO did not affect the lifespan of CB6F1 female mice. Finally, we conduct a lifespan and health span study in males and females C57BL/6 J mice comparing oral treatment with pristine C60-EVOO and EVOO alone versus untreated controls. We failed to observe significant lifespan and health span benefits of C60-EVOO or EVOO supplementation compared to untreated controls, both starting the treatment in adult or old age. Our results call into question the biological benefit of C60-OO in aging.


Asunto(s)
Antioxidantes , Longevidad , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Aceite de Oliva
8.
RSC Med Chem ; 11(9): 1048-1052, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479697

RESUMEN

Fenretinide is a synthetic retinoid pharmaceutical linked to ceramide build-up in vivo. Saposin D is an intralysosomal protein necessary for ceramide binding/degradation. We show, via electronic absorption spectroscopy, fluorescence spectroscopy, and ceramide hydrolysis assays, that fenretinide is bound by saposin D {K a = (1.45 ± 0.49) × 105 M-1}, and affects ceramide solubilization/degradation.

9.
Curr Protoc Protein Sci ; 97(1): e96, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31517448

RESUMEN

This article provides detailed protocols for a high-throughput fluorescence polarization (FP) spectroscopy approach to disentangle the interactions of membrane proteins with solubilizing detergents. Existing techniques for examining the membrane protein-detergent complex (PDC) interactions are low throughput and require high amounts of proteins. Here, we describe a 96-well analytical approach, which facilitates a scalable analysis of the PDC interactions at low-nanomolar concentrations of membrane proteins in native solutions. At detergent concentrations much greater than the equilibrium dissociation constant of the PDC, Kd , the FP anisotropy reaches a saturated value, so it is independent of the detergent concentration. On the contrary, at detergent concentrations comparable with or lower than the Kd , the FP anisotropy readout undergoes a time-dependent decrease, exhibiting a sensitive and specific detergent-dissociation signature. Our approach can also be used for determining the kinetic rate constants of association and dissociation. With further development, these protocols might be used in various arenas of membrane protein research that pertain to extraction, solubilization, and stabilization. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Detergentes/química , Proteínas de Escherichia coli/química , Fosforilcolina/química , Porinas/química , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Pliegue de Proteína , Termodinámica
10.
Rejuvenation Res ; 21(6): 560-571, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30516450

RESUMEN

Macular degeneration is hallmarked by retinal accumulation of toxic retinoid species (e.g., A2E) for which there is no endogenous mechanism to eliminate it. This ultimately results in progressive dysfunction and loss of vision either in advanced age for genetically normal patients (age-related macular degeneration) or in adolescence for those with inherited genetic mutations (Stargardt's disease). In this article, we present a proof-of-concept study for an enzyme-based therapy to remove these retinoids, modeled on traditional enzyme replacement therapy. Recombinant manganese peroxidase (rMnP) is produced in Pichia pastoris. In vitro, we demonstrate that rMnP breaks down A2E and other lipofuscin fluorophores with limited cellular toxicity, and as this enzyme is mannosylated, it can be taken up into cells through mannose receptor-dependent endocytosis. In vivo, we demonstrate that rMnP can significantly reduce the A2E burden when administered by intravitreal injections. Together, these data provide encouraging results toward the development of an enzyme-based therapy for macular degeneration and indicate the need for additional work to characterize the molecular mechanism of A2E breakdown and to improve the pharmacological parameters of the enzyme.


Asunto(s)
Modelos Animales de Enfermedad , Degeneración Macular/congénito , Degeneración Macular/terapia , Peroxidasas/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Retinoides/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Animales , Células Cultivadas , Humanos , Lipofuscina/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones , Ratones Noqueados , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt
11.
J Phys Chem B ; 122(41): 9471-9481, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30251852

RESUMEN

Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from ß-barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy measurements, we recorded real-time, specific signatures of the PDC interactions. The results of these measurements were used to infer the model-dependent rate constants of association and dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on the overall protein charge despite the nonionic nature of the detergent monomers. In the future, this approach might be employed for high-throughput screening of kinetic fingerprints of different membrane proteins stabilized in micelles that contain mixtures of various detergents.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Detergentes/metabolismo , Proteínas de Escherichia coli/metabolismo , Anisotropía , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Detergentes/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Polarización de Fluorescencia , Concentración de Iones de Hidrógeno , Cinética , Maltosa/análogos & derivados , Maltosa/metabolismo , Micelas , Mutación , Unión Proteica , Electricidad Estática
12.
Biochemistry ; 57(21): 3036-3049, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29722979

RESUMEN

Antibodies are the most prolific biologics in research and clinical environments because of their ability to bind targets with high affinity and specificity. However, antibodies also carry liabilities. A significant portion of the life-science reproducibility crisis is driven by inconsistent performance of research-grade antibodies, and clinical antibodies are often unstable and require costly cold-chain management to reach their destinations in active form. In biotechnology, antibodies are also limited by difficulty integrating them in many recombinant systems due to their size and structural complexity. A switch to small, stable, sequence-verified binding scaffolds may overcome these barriers. Here we present such a scaffold, RPtag, based on a ribose-binding protein (RBP) from extremophile Caldanaerobacter subterraneus. RPtag binds an optimized peptide with pM affinity, is stable to extreme temperature, pH, and protease treatment, readily refolds after denaturation, is effective in common laboratory applications, was rationally engineered to bind bioactive PDGF-ß, and was formulated as a gut-stable orally bioavailable preparation.


Asunto(s)
Epítopos/química , Epítopos/inmunología , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Anticuerpos/química , Modelos Moleculares , Péptidos , Unión Proteica , Reproducibilidad de los Resultados
13.
J Phys Chem Lett ; 9(8): 1913-1919, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29595981

RESUMEN

Gradual dissociation of detergent molecules from water-insoluble membrane proteins culminates in protein aggregation. However, the time-dependent trajectory of this process remains ambiguous because the signal-to-noise ratio of most spectroscopic and calorimetric techniques is drastically declined by the presence of protein aggregates in solution. We show that by using steady-state fluorescence polarization (FP) spectroscopy the dissociation of the protein-detergent complex (PDC) can be inspected in real time at detergent concentrations below the critical micelle concentration. This article provides experimental evidence of the coexistence of two distinct phases of the dissociations of detergent monomers from membrane proteins. We first noted a slow detergent predesolvation process, which was accompanied by a relatively modest change in the FP anisotropy, suggesting a small number of dissociated detergent monomers from the proteomicelles. This predesolvation phase was followed by a fast detergent desolvation process, which was highlighted by a major alteration in the FP anisotropy. The durations and rates of these phases were dependent on both the detergent concentration and the interfacial PDC interactions. Further development of this approach might lead to the creation of a new semiquantitative method for the assessment of the kinetics of association and dissociation of proteomicelles.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Detergentes/química , Polarización de Fluorescencia , Cinética
14.
J Phys Chem B ; 121(44): 10228-10241, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29035562

RESUMEN

Although fundamentally significant in structural, chemical, and membrane biology, the interfacial protein-detergent complex (PDC) interactions have been modestly examined because of the complicated behavior of both detergents and membrane proteins in aqueous phase. Membrane proteins are prone to unproductive aggregation resulting from poor detergent solvation, but the participating forces in this phenomenon remain ambiguous. Here, we show that using rational membrane protein design, targeted chemical modification, and steady-state fluorescence polarization spectroscopy, the detergent desolvation of membrane proteins can be quantitatively evaluated. We demonstrate that depleting the detergent in the sample well produced a two-state transition of membrane proteins between a fully detergent-solvated state and a detergent-desolvated state, the nature of which depended on the interfacial PDC interactions. Using a panel of six membrane proteins of varying hydrophobic topography, structural fingerprint, and charge distribution on the solvent-accessible surface, we provide direct experimental evidence for the contributions of the electrostatic and hydrophobic interactions to the protein solvation properties. Moreover, all-atom molecular dynamics simulations report the major contribution of the hydrophobic forces exerted at the PDC interface. This semiquantitative approach might be extended in the future to include studies of the interfacial PDC interactions of other challenging membrane protein systems of unknown structure. This would have practical importance in protein extraction, solubilization, stabilization, and crystallization.


Asunto(s)
Detergentes/química , Proteínas de la Membrana/química , Polarización de Fluorescencia , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/síntesis química , Simulación de Dinámica Molecular
15.
Anal Chem ; 89(15): 8013-8020, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28650154

RESUMEN

Understanding how membrane proteins interact with detergents is of fundamental and practical significance in structural and chemical biology as well as in nanobiotechnology. Current methods for inspecting protein-detergent complex (PDC) interfaces require high concentrations of protein and are of low throughput. Here, we describe a scalable, spectroscopic approach that uses nanomolar protein concentrations in native solutions. This approach, which is based on steady-state fluorescence polarization (FP) spectroscopy, kinetically resolves the dissociation of detergents from membrane proteins and protein unfolding. For satisfactorily solubilizing detergents, at concentrations much greater than the critical micelle concentration (CMC), the fluorescence anisotropy was independent of detergent concentration. In contrast, at detergent concentrations comparable with or below the CMC, the anisotropy readout underwent a time-dependent decrease, showing a specific and sensitive protein unfolding signature. Functionally reconstituted membrane proteins into a bilayer membrane confirmed predictions made by these FP-based determinations with respect to varying refolding conditions. From a practical point of view, this 96-well analytical approach will facilitate a massively parallel assessment of the PDC interfacial interactions under a fairly broad range of micellar and environmental conditions. We expect that these studies will potentially accelerate research in membrane proteins pertaining to their extraction, solubilization, stabilization, and crystallization, as well as reconstitution into bilayer membranes.


Asunto(s)
Polarización de Fluorescencia , Proteínas de la Membrana/química , Nanoporos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Detergentes/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Desplegamiento Proteico , Electricidad Estática
16.
Biochim Biophys Acta ; 1858(1): 19-29, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26456555

RESUMEN

One persistent challenge in membrane protein design is accomplishing extensive modifications of proteins without impairing their functionality. A truncation derivative of the ferric hydroxamate uptake component A (FhuA), which featured the deletion of the 160-residue cork domain and five large extracellular loops, produced the conversion of a non-conductive, monomeric, 22-stranded ß-barrel protein into a large-conductance protein pore. Here, we show that this redesigned ß-barrel protein tolerates an extensive alteration in the internal surface charge, encompassing 25 negative charge neutralizations. By using single-molecule electrophysiology, we noted that a commonality of various truncation FhuA protein pores was the occurrence of 33% blockades of the unitary current at very high transmembrane potentials. We determined that these current transitions were stimulated by their interaction with an external cationic polypeptide, which occurred in a fashion dependent on the surface charge of the pore interior as well as the polypeptide characteristics. This study shows promise for extensive engineering of a large monomeric ß-barrel protein pore in molecular biomedical diagnosis, therapeutics, and biosensor technology.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Receptores Virales/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Activación del Canal Iónico , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Electricidad Estática , Relación Estructura-Actividad
17.
Mol Pharmacol ; 87(5): 825-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25710967

RESUMEN

p53 is a Zn(2+)-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn(2+)]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn(2+)-binding mutants by binding Zn(2+) and buffering it to a level such that Zn(2+) can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn(2+)]free by functioning as a Zn(2+) ionophore, binding Zn(2+) in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn(2+)]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2-3 minutes. These [Zn(2+)]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.


Asunto(s)
Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Ionóforos/metabolismo , Metalochaperonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Zinc/metabolismo , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Mutación/genética , Conformación Proteica , Proteína p53 Supresora de Tumor/genética
18.
Biochim Biophys Acta ; 1818(11): 2908-16, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22824298

RESUMEN

To achieve the uptake of small, water-soluble nutrients, Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium, employs substrate-specific channels located within its outer membrane. In this paper, we present a detailed description of the single-channel characteristics of six members of the outer membrane carboxylate channel D (OccD) subfamily. Recent structural studies showed that the OccD proteins share common features, such as a closely related, monomeric, 18-stranded ß-barrel conformation and large extracellular loops, which are folded back into the channel lumen. Here, we report that the OccD proteins displayed single-channel activity with a unitary conductance covering an unusually broad range, between 20 and 670pS, as well as a diverse gating dynamics. Interestingly, we found that cation selectivity is a conserved trait among all members of the OccD subfamily, bringing a new distinction between the members of the OccD subfamily and the anion-selective OccK channels. Conserved cation selectivity of the OccD channels is in accord with an increased specificity and selectivity of these proteins for positively charged, carboxylate-containing substrates.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Pseudomonas aeruginosa/química , Proteínas de la Membrana Bacteriana Externa/genética , Cationes , Clonación Molecular , Membrana Dobles de Lípidos
19.
J Phys Condens Matter ; 22(45): 454117, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21339604

RESUMEN

The transport of polypeptides through nanopores is a key process in biology and medical biotechnology. Despite its critical importance, the underlying kinetics of polypeptide translocation through protein nanopores is not yet comprehensively understood. Here, we present a simple two-barrier, one-well kinetic model for the translocation of short positively charged polypeptides through a single transmembrane protein nanopore that is equipped with negatively charged rings, simply called traps. We demonstrate that the presence of these traps within the interior of the nanopore dramatically alters the free energy landscape for the partitioning of the polypeptide into the nanopore interior, as revealed by significant modifications in the activation free energies required for the transitions of the polypeptide from one state to the other. Our kinetic model permits the calculation of the relative and absolute exit frequencies of the short cationic polypeptides through either opening of the nanopore. Moreover, this approach enabled quantitative assessment of the kinetics of translocation of the polypeptides through a protein nanopore, which is strongly dependent on several factors, including the nature of the translocating polypeptide, the position of the traps, the strength of the polypeptide-attractive trap interactions and the applied transmembrane voltage.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Péptidos/química , Transporte de Proteínas , Simulación por Computador , Difusión , Porosidad
20.
J Am Chem Soc ; 129(45): 14034-41, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17949000

RESUMEN

Facilitated translocation of polypeptides through a protein pore is a ubiquitous and fundamental process in biology. Several translocation systems possess various well-defined binding sites within the pore lumen, but a clear mechanistic understanding of how the interaction of the polypeptides with the binding site alters the underlying kinetics is still missing. Here, we employed rational protein design and single-channel electrical recordings to obtain detailed kinetic signatures of polypeptide translocation through the staphylococcal alpha-hemolysin (alphaHL) transmembrane pore, a robust, tractable, and versatile beta-barrel protein. Acidic binding sites composed of rings of negatively charged aspartic acid residues, engineered at strategic positions within the beta barrel, produced dramatic changes in the functional properties of the alphaHL protein, facilitating the transport of cationic polypeptides from one side of the membrane to the other. When two electrostatic binding sites were introduced, at the entry and exit of the beta barrel, both the rate constants of association and dissociation increased substantially, diminishing the free energy barrier for translocation. By contrast, more hydrophobic polypeptides exhibited a considerable decrease in the rate constant of association to the pore lumen, having to overcome a greater energetic barrier because of the hydrophilic nature of the pore interior.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Péptidos/química , Péptidos/fisiología , Toxinas Bacterianas/química , Sitios de Unión , Catálisis , Cationes/química , Membrana Celular/química , Membrana Celular/fisiología , Proteínas Hemolisinas/química , Cinética , Modelos Moleculares , Péptidos/síntesis química , Transporte de Proteínas/fisiología , Staphylococcus/química , Staphylococcus/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...