Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114227, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38735044

RESUMEN

CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.


Asunto(s)
Cromatina , Células Madre Hematopoyéticas , Proteínas de Homeodominio , Proteínas Represoras , Humanos , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética
2.
Int J Mol Sci ; 24(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37240389

RESUMEN

Cataracts are among the most common causes of childhood vision loss worldwide. This study seeks to identify differentially expressed proteins in the aqueous humor of pediatric cataract patients. Samples of aqueous humor were collected from pediatric and adult cataract patients and subjected to mass spectrometry-based proteomic analysis. Samples of pediatric cataracts were grouped by subtype and compared to adult samples. Differentially expressed proteins in each subtype were identified. Gene ontology analysis was performed using WikiPaths for each cataract subtype. Seven pediatric patients and ten adult patients were included in the study. Of the pediatric samples, all seven (100%) were male, three (43%) had traumatic cataracts, two (29%) had congenital cataracts, and two (29%) had posterior polar cataracts. Of the adult patients, seven (70%) were female and seven (70%) had predominantly nuclear sclerotic cataracts. A total of 128 proteins were upregulated in the pediatric samples, and 127 proteins were upregulated in the adult samples, with 75 proteins shared by both groups. Gene ontology analysis identified inflammatory and oxidative stress pathways as upregulated in pediatric cataracts. Inflammatory and oxidative stress mechanisms may be involved in pediatric cataract formation and warrant further investigation.


Asunto(s)
Catarata , Proteómica , Adulto , Humanos , Masculino , Femenino , Niño , Catarata/metabolismo , Estrés Oxidativo , Espectrometría de Masas , Biomarcadores/metabolismo , Humor Acuoso/metabolismo
3.
Front Cell Dev Biol ; 11: 1110423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009488

RESUMEN

Telomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.

4.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792123

RESUMEN

BACKGROUND: Immune tolerance contributes to resistance to conventional cancer therapies such as radiation. Radiotherapy induces immunogenic cell death, releasing a burst of tumor antigens, but this appears insufficient to stimulate an effective antitumor immune response. Radiation also increases infiltration of cytotoxic T lymphocytes (CTLs), but their effector function is short lived. Although CTL exhaustion may be at fault, combining immune checkpoint blockade with radiation is insufficient to restore CTL function in most patients. An alternative model is that antigen presentation is the limiting factor, suggesting a defect in dendritic cell (DC) function. METHODS: Building on our prior work showing that cancer cells treated with radiation in the presence of the poly(ADP-ribose) polymerase-1 inhibitor veliparib undergo immunogenic senescence, we reexamined senescent cells (SnCs) as preventative or therapeutic cancer vaccines. SnCs formed in vitro were cocultured with splenocytes and evaluated by scRNA-seq to examine immunogenicity. Immature bone-marrow-derived DCs cocultured with SnCs were examined for maturation and activation by flow cytometry and T cell proliferation assays. Viable SnCs or SnC-activated DCs were injected subcutaneously, and vaccine effects were evaluated by analysis of immune response, prevention of tumor engraftment, regression of established tumors and/or potentiation of immunotherapy or radiotherapy. RESULTS: Murine CT26 colon carcinoma or 4T1 mammary carcinoma cells treated with radiation and veliparib form SnCs that promote DC maturation and activation in vitro, leading to efficient, STING-dependent CTL priming. Injecting mice with SnCs induces antigen-specific CTLs and confers protection from tumor engraftment. Injecting immunogenic SnCs into tumor-bearing mice increases inflammation with activated CTLs, suppresses tumor growth, potentiates checkpoint blockade, enhances radiotherapy and blocks colonization by disseminated tumor cells. Addressing the concern that reinjecting tumor cells into patients may be impractical, DCs activated with SnCs in vitro were similarly effective to SnCs in suppressing established tumors and blocking metastases. CONCLUSIONS: Therapeutic vaccines based on senescent tumor cells and/or SnC-activated DCs have the potential to improve genotoxic and immune therapies and limit recurrence or metastasis.


Asunto(s)
Vacunas contra el Cáncer , Carcinoma , Neoplasias del Colon , Ratones , Animales , Linfocitos T Citotóxicos , Antígenos de Neoplasias , Carcinoma/tratamiento farmacológico
5.
Dev Cell ; 57(24): 2683-2698.e8, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36495876

RESUMEN

Sorting transmembrane cargo is essential for tissue development and homeostasis. However, mechanisms of intracellular trafficking in stratified epidermis are poorly understood. Here, we identify an interaction between the retromer endosomal trafficking component, VPS35, and the desmosomal cadherin, desmoglein-1 (Dsg1). Dsg1 is specifically expressed in stratified epidermis and, when properly localized on the plasma membrane of basal keratinocytes, promotes stratification. We show that the retromer drives Dsg1 recycling from the endo-lysosomal system to the plasma membrane to support human keratinocyte stratification. The retromer-enhancing chaperone, R55, promotes the membrane localization of Dsg1 and a trafficking-deficient mutant associated with a severe inflammatory skin disorder, enhancing its ability to promote stratification. In the absence of Dsg1, retromer association with and expression of the glucose transporter GLUT1 increases, exposing a potential link between Dsg1 deficiency and epidermal metabolism. Our work provides evidence for retromer function in epidermal regeneration, identifying it as a potential therapeutic target.


Asunto(s)
Desmogleína 1 , Epidermis , Humanos , Cadherinas/metabolismo , Desmogleína 1/metabolismo , Endosomas/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Queratinocitos/metabolismo
6.
Cell Chem Biol ; 29(10): 1517-1531.e7, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206753

RESUMEN

Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.


Asunto(s)
Tolerancia a Radiación , Telomerasa , Animales , Ratones , Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo , Telómero
7.
Sci Rep ; 12(1): 151, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997000

RESUMEN

CUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms. Others, however, have described oncogenic functions of CUX1 in solid tumors, often attributed to truncated CUX1 isoforms, p75 and p110, generated by an alternative transcriptional start site or post-translational cleavage, respectively. Given the clinical relevance, it is imperative to clarify these discrepant activities. Herein, we sought to determine the CUX1 isoforms expressed in hematopoietic cells and find that they express the full-length p200 isoform. Through the course of this analysis, we found no evidence of the p75 alternative transcript in any cell type examined. Using an array of orthogonal approaches, including biochemistry, proteomics, CRISPR/Cas9 genomic editing, and analysis of functional genomics datasets across a spectrum of normal and malignant tissue types, we found no data to support the existence of the CUX1 p75 isoform as previously described. Based on these results, prior studies of p75 require reevaluation, including the interpretation of oncogenic roles attributed to CUX1.


Asunto(s)
Genómica , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Células HL-60 , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Células MCF-7 , Ratones , Células 3T3 NIH , Isoformas de Proteínas , Procesamiento Postranscripcional del ARN , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Activación Transcripcional , Células U937
8.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34724007

RESUMEN

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Asunto(s)
Acetiltransferasas/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Proteínas Bacterianas/antagonistas & inhibidores , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/inmunología , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
9.
Blood ; 138(9): 790-805, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473231

RESUMEN

Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases. We report that CUX1 has a critical early role in the DNA repair process in HSPCs. Mechanistically, CUX1 recruits the histone methyltransferase EHMT2 to DNA breaks to promote downstream H3K9 and H3K27 methylation, phosphorylated ATM retention, subsequent γH2AX focus formation and propagation, and, ultimately, 53BP1 recruitment. Despite significant unrepaired DNA damage sustained in CUX1-deficient murine HSPCs after cytotoxic exposures, they continue to proliferate and expand, mimicking clonal hematopoiesis in patients postchemotherapy. As a consequence, preexisting CUX1 deficiency predisposes mice to highly penetrant and rapidly fatal therapy-related erythroleukemias. These findings establish the importance of epigenetic regulation of HSPC DNA repair and position CUX1 as a gatekeeper in myeloid transformation.


Asunto(s)
Cromosomas de los Mamíferos , Reparación del ADN , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio , Leucemia Eritroblástica Aguda , Proteínas de Neoplasias , Neoplasias Primarias Secundarias , Proteínas Nucleares , Proteínas Represoras , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Hematopoyesis Clonal , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Nat Commun ; 12(1): 4372, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272370

RESUMEN

Intrarenal B cells in human renal allografts indicate transplant recipients with a poor prognosis, but how these cells contribute to rejection is unclear. Here we show using single-cell RNA sequencing that intrarenal class-switched B cells have an innate cell transcriptional state resembling mouse peritoneal B1 or B-innate (Bin) cells. Antibodies generated by Bin cells do not bind donor-specific antigens nor are they enriched for reactivity to ubiquitously expressed self-antigens. Rather, Bin cells frequently express antibodies reactive with either renal-specific or inflammation-associated antigens. Furthermore, local antigens can drive Bin cell proliferation and differentiation into plasma cells expressing self-reactive antibodies. These data show a mechanism of human inflammation in which a breach in organ-restricted tolerance by infiltrating innate-like B cells drives local tissue destruction.


Asunto(s)
Aloinjertos/inmunología , Linfocitos B/metabolismo , Rechazo de Injerto/inmunología , Inflamación/metabolismo , Trasplante de Riñón/efectos adversos , Animales , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Ontología de Genes , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Inmunoglobulina G/inmunología , Riñón/inmunología , Riñón/metabolismo , Ratones , Tonsila Palatina/inmunología , Tonsila Palatina/metabolismo , RNA-Seq , Análisis de la Célula Individual , Trasplante Homólogo
11.
Cell Chem Biol ; 28(6): 776-787.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33352117

RESUMEN

Topoisomerase 1 (Top1) reversibly nicks chromosomal DNA to relax strain accumulated during transcription, replication, chromatin assembly, and chromosome condensation. The Top1 poison camptothecin targets cancer cells by trapping the enzyme in the covalent complex Top1cc, tethered to cleaved DNA by a tyrosine-3'-phosphate bond. In vitro mechanistic studies point to interfacial inhibition, where camptothecin binding to the Top1-DNA interface stabilizes Top1cc. Here we present a complementary covalent mechanism that is critical in vivo. We observed that camptothecins induce oxidative stress, leading to lipid peroxidation, lipid-derived electrophile accumulation, and Top1 poisoning via covalent modification. The electrophile 4-hydroxy-2-nonenal can induce Top1cc on its own and forms a Michael adduct to a cysteine thiol in the Top1 active site, potentially blocking tyrosine dephosphorylation and 3' DNA phosphate release. Thereby, camptothecins may leverage a physiological cysteine-based redox switch in Top1 to mediate their selective toxicity to rapidly proliferating cancer cells.


Asunto(s)
Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Lípidos/química , Camptotecina/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos
12.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33326013

RESUMEN

Cells exposed to heat shock induce a conserved gene expression program, the heat shock response (HSR), encoding protein homeostasis (proteostasis) factors. Heat shock also triggers proteostasis factors to form subcellular quality control bodies, but the relationship between these spatial structures and the HSR is unclear. Here we show that localization of the J-protein Sis1, a cofactor for the chaperone Hsp70, controls HSR activation in yeast. Under nonstress conditions, Sis1 is concentrated in the nucleoplasm, where it promotes Hsp70 binding to the transcription factor Hsf1, repressing the HSR. Upon heat shock, Sis1 forms an interconnected network with other proteostasis factors that spans the nucleolus and the surface of the endoplasmic reticulum. We propose that localization of Sis1 to this network directs Hsp70 activity away from Hsf1 in the nucleoplasm, leaving Hsf1 free to induce the HSR. In this manner, Sis1 couples HSR activation to the spatial organization of the proteostasis network.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Proteostasis , Saccharomyces cerevisiae/genética , Fracciones Subcelulares/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética
13.
FEBS J ; 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144867

RESUMEN

The use of model organisms for recombinant protein production results in the addition of model-specific post-translational modifications (PTMs) that can affect the structure, charge, and function of the protein. The 70-kDa heat shock proteins (Hsp70) were originally described as intracellular chaperones, with ATPase and foldase activity. More recently, new extracellular activities of Hsp70 proteins (e.g. as immunomodulators) have been identified. While some studies indicate an inflammatory potential for extracellular Hsp70 proteins, others suggest an immunosuppressive activity. We hypothesized that the production of recombinant Hsp70 in different expression systems would result in the addition of different PTMs, perhaps explaining at least some of these opposing immunological outcomes. We produced and purified Mycobacterium tuberculosis DnaK from two different systems, Escherichia coli and Pichia pastoris, and analyzed by mass spectrometry the protein preparations, investigating the impact of PTMs in an in silico and in vitro perspective. The comparisons of DnaK structures in silico highlighted that electrostatic and topographical differences exist that are dependent upon the expression system. Production of DnaK in the eukaryotic system dramatically affected its ATPase activity, and significantly altered its ability to downregulate MHC II and CD86 expression on murine dendritic cells (DCs). Phosphatase treatment of DnaK indicated that some of these differences related specifically to phosphorylation. Altogether, our data indicate that PTMs are an important characteristic of the expression system, with differences that impact interactions of Hsps with their ligands and subsequent functional activities.

14.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31964485

RESUMEN

Heat shock proteins are best known for their role as chaperonins involved in general proteostasis, but they can also participate in specific cellular regulatory pathways, e.g. via their post-translational modification. Hsp70/Ssa1 is a central cytoplasmic chaperonin in eukaryotes, which also participates in cell cycle regulation via its phosphorylation at a specific residue. Here we analyze the role of Ssa1 phosphorylation in the morphogenesis of the fungus Candida albicans, a common human opportunistic pathogen. C. albicans can assume alternative yeast and hyphal (mold) morphologies, an ability that contributes to its virulence. We identified 11 phosphorylation sites on C. albicans Ssa1, of which 8 were only detected in the hyphal cells. Genetic analysis of these sites revealed allele-specific effects on growth or hyphae formation at 42 °C. Colony morphology, which is normally wrinkled or crenellated at 37 °C, reverted to smooth in several mutants, but this colony morphology phenotype was unrelated to cellular morphology. Two mutants exhibited a mild increase in sensitivity to the cell wall-active compounds caspofungin and calcofluor white. We suggest that this analysis could help direct screens for Ssa1-specific drugs to combat C. albicans virulence. The pleiotropic effects of many Ssa1 mutations are consistent with the large number of Ssa1 client proteins, whereas the lack of concordance between the phenotypes of the different alleles suggests that different sites on Ssa1 can affect interaction with specific classes of client proteins, and that modification of these sites can play cellular regulatory roles, consistent with the "chaperone code" hypothesis.


Asunto(s)
Candida albicans/citología , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas HSP70 de Choque Térmico/química , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Morfogénesis , Fosforilación
15.
Data Brief ; 27: 104580, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31673583

RESUMEN

Nematostella vectensis is an estuarine sea anemone that has emerged as a model species to characterize molecular responses to physiological stressors due to its exposure to diverse, extreme abiotic conditions. In marine cnidarians, Hsp70 proteins can be effective biomarkers to determine mechanisms of physiological acclimation and evolutionary adaptations to environmental stress: a pressing issue as concerns about climate change grow. Here we show the results of affinity purification mass spectrometry of three Nematostella vectensis Hsp70 isoforms, NvHsp70A, B and D when expressed in untreated and heat shocked yeast cells lacking their native Hsp70s. We identified a total of 1031 interactors for the three NvHsp70 isoforms, 549 or which were shared. NvHsp70 isoform interactions altered substantially under heat stress with 17% of NvHsp70A, 51% of NvHsp70B and 20% of NvHsp70D interactions increasing after exposure to 39 °C for 2 hours. For further interpretation of the data presented in this article, please see the research article "Dynamic remodeling of the interactomes of Nematostella vectensis Hsp70 isoforms under heat shock".

16.
Sci Rep ; 9(1): 16260, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700027

RESUMEN

Hsp70 is a highly conserved molecular chaperone critical for the folding of new and denatured proteins. While traditional models state that cells respond to stress by upregulating inducible HSPs, this response is relatively slow and is limited by transcriptional and translational machinery. Recent studies have identified a number of post-translational modifications (PTMs) on Hsp70 that act to fine-tune its function. We utilized mass spectrometry to determine whether yeast Hsp70 (Ssa1) is differentially modified upon heat shock. We uncovered four lysine residues on Ssa1, K86, K185, K354 and K562 that are deacetylated in response to heat shock. Mutation of these sites cause a substantial remodeling of the Hsp70 interaction network of co-chaperone partners and client proteins while preserving essential chaperone function. Acetylation/deacetylation at these residues alter expression of other heat-shock induced chaperones as well as directly influencing Hsf1 activity. Taken together our data suggest that cells may have the ability to respond to heat stress quickly though Hsp70 deacetylation, followed by a slower, more traditional transcriptional response.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Levaduras/metabolismo , Acetilación , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Proteica , Levaduras/genética
17.
J Proteomics ; 206: 103416, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31233900

RESUMEN

Heat shock protein 70s (Hsp70s) are a highly conserved class of molecular chaperones that fold a large proportion of the proteome. Nematostella vectensis (Nv) is an estuarine sea anemone that has emerged as a model species to characterize molecular responses to physiological stressors due to its exposure to diverse, extreme abiotic conditions. Previous transcriptional data has shown dramatic differences among expression profiles of three NvHsp70 isoforms (NvHsp70A, B and D) under stress but it is unknown if, and to what extent, the client proteins for these chaperones differ. In order to determine client specificity, NvHsp70A, B and D were expressed in Saccharomyces cerevisiae budding yeast lacking native Hsp70 and interacting proteins for each Hsp70 were determined with mass spectrometry in yeast ambient and heat shock conditions. Our analyses showed <50% of identified interacting proteins were common to all three anemone Hsp70s and 3-18% were unique to an individual Hsp70. Mapping of temperature induced interactions suggest that under stress a proportion of clients are transferred from NvHsp70A and NvHsp70D to NvHsp70B. Together, these data suggest a diverse set of interacting proteins for Hsp70 isoforms that likely determines the precise functions for Hsp70s in organismal acclimation and potentially adaptation. BIOLOGICAL SIGNIFICANCE: Although the Hsp70 family of molecular chaperones has been studied for >50 years, it is still not fully understood why organisms encode and express many highly-similar Hsp70 isoforms. The prevailing theory is that these isoforms have identical function, but are expressed under unique cellular conditions that include heat shock to cope with increased number of unfolded/misfolded proteins. The sea anemone Nematostella vectensis encodes three Hsp70 isoforms A, B and D that when expressed in yeast demonstrate unique functionalities. This study provides the interactome of NvHsp70s A, B and D and demonstrates that Hsp70 isoforms, while highly similar in sequence, have unique co-chaperone and client interactors.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Anémonas de Mar/metabolismo , Adaptación Fisiológica/fisiología , Animales , Proteínas HSP70 de Choque Térmico/genética , Espectrometría de Masas , Organismos Modificados Genéticamente , Unión Proteica , Mapas de Interacción de Proteínas/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/análisis , Proteómica/métodos , Saccharomyces cerevisiae/genética , Estrés Fisiológico/fisiología
18.
Mol Cancer Res ; 17(6): 1338-1350, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30885991

RESUMEN

The metabolic reprogramming associated with characteristic increases in glucose and glutamine metabolism in advanced cancer is often ascribed to answering a higher demand for metabolic intermediates required for rapid tumor cell growth. Instead, recent discoveries have pointed to an alternative role for glucose and glutamine metabolites as cofactors for chromatin modifiers and other protein posttranslational modification enzymes in cancer cells. Beyond epigenetic mechanisms regulating gene expression, many chromatin modifiers also modulate DNA repair, raising the question whether cancer metabolic reprogramming may mediate resistance to genotoxic therapy and genomic instability. Our prior work had implicated N-acetyl-glucosamine (GlcNAc) formation by the hexosamine biosynthetic pathway (HBP) and resulting protein O-GlcNAcylation as a common means by which increased glucose and glutamine metabolism can drive double-strand break (DSB) repair and resistance to therapy-induced senescence in cancer cells. We have examined the effects of modulating O-GlcNAcylation on the DNA damage response (DDR) in MCF7 human mammary carcinoma in vitro and in xenograft tumors. Proteomic profiling revealed deregulated DDR pathways in cells with altered O-GlcNAcylation. Promoting protein O-GlcNAc modification by targeting O-GlcNAcase or simply treating animals with GlcNAc protected tumor xenografts against radiation. In turn, suppressing protein O-GlcNAcylation by blocking O-GlcNAc transferase activity led to delayed DSB repair, reduced cell proliferation, and increased cell senescence in vivo. Taken together, these findings confirm critical connections between cancer metabolic reprogramming, DDR, and senescence and provide a rationale to evaluate agents targeting O-GlcNAcylation in patients as a means to restore tumor sensitivity to radiotherapy. IMPLICATIONS: The finding that the HBP, via its impact on protein O-GlcNAcylation, is a key determinant of the DDR in cancer provides a mechanistic link between metabolic reprogramming, genomic instability, and therapeutic response and suggests novel therapeutic approaches for tumor radiosensitization.


Asunto(s)
Acilación/genética , Proliferación Celular/genética , Senescencia Celular/genética , Reparación del ADN/genética , Animales , Vías Biosintéticas/genética , Neoplasias de la Mama/genética , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Epigénesis Genética/genética , Femenino , Inestabilidad Genómica/genética , Glucosa/genética , Glutamina/genética , Células HEK293 , Hexosaminas/genética , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos
19.
Elife ; 72018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29504933

RESUMEN

Glycogen synthase kinase 3 (GSK3) is a critical regulator of diverse cellular functions involved in the maintenance of structure and function. Enzymatic activity of GSK3 is inhibited by N-terminal serine phosphorylation. However, alternate post-translational mechanism(s) responsible for GSK3 inactivation are not characterized. Here, we report that GSK3α and GSK3ß are acetylated at Lys246 and Lys183, respectively. Molecular modeling and/or molecular dynamics simulations indicate that acetylation of GSK3 isoforms would hinder both the adenosine binding and prevent stable interactions of the negatively charged phosphates. We found that SIRT2 deacetylates GSK3ß, and thus enhances its binding to ATP. Interestingly, the reduced activity of GSK3ß is associated with lysine acetylation, but not with phosphorylation at Ser9 in hearts of SIRT2-deficient mice. Moreover, GSK3 is required for the anti-hypertrophic function of SIRT2 in cardiomyocytes. Overall, our study identified lysine acetylation as a novel post-translational modification regulating GSK3 activity.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Sirtuina 2/metabolismo , Animales , Línea Celular , Glucógeno Sintasa Quinasa 3/química , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Simulación de Dinámica Molecular , Fosforilación
20.
Cell Death Differ ; 25(9): 1638-1656, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29449643

RESUMEN

c-Jun NH2-terminal kinases (JNKs) are responsive to stress stimuli and their activation regulate key cellular functions, including cell survival, growth, differentiation and aging. Previous studies demonstrate that activation of JNK requires dual phosphorylation by the mitogen-activated protein kinase kinases. However, other post-translational mechanisms involved in regulating the activity of JNK have been poorly understood. In this work, we studied the functional significance of reversible lysine acetylation in regulating the kinase activity of JNK. We found that the acetyl transferase p300 binds to, acetylates and inhibits kinase activity of JNK. Using tandem mass spectrometry, molecular modelling and molecular dynamics simulations, we found that acetylation of JNK at Lys153 would hinder the stable interactions of the negatively charged phosphates and prevent the adenosine binding to JNK. Our screening for the deacetylases found SIRT2 as a deacetylase for JNK. Mechanistically, SIRT2-dependent deacetylation enhances ATP binding and enzymatic activity of JNK towards c-Jun. Furthermore, SIRT2-mediated deacetylation favours the phosphorylation of JNK by MKK4, an upstream kinase. Our results indicate that deacetylation of JNK by SIRT2 promotes oxidative stress-induced cell death. Conversely, SIRT2 inhibition attenuates H2O2-mediated cell death in HeLa cells. SIRT2-deficient (SIRT2-KO) mice exhibit increased acetylation of JNK, which is associated with markedly reduced catalytic activity of JNK in the liver. Interestingly, SIRT2-KO mice were resistant to acetaminophen-induced liver toxicity. SIRT2-KO mice show lower cell death, minimal degenerative changes, improved liver function and survival following acetaminophen treatment. Overall, our work identifies SIRT2-mediated deacetylation of JNK as a critical regulator of cell survival during oxidative stress.


Asunto(s)
Apoptosis , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Estrés Oxidativo , Sirtuina 2/metabolismo , Acetaminofén/toxicidad , Acetilación/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/mortalidad , Cristalografía por Rayos X , Proteína p300 Asociada a E1A/metabolismo , Peróxido de Hidrógeno/toxicidad , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Sirtuina 2/deficiencia , Sirtuina 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA