Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Med (Berl) ; 99(8): 1151-1171, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34018016

RESUMEN

Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. KEY MESSAGES: LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adipocitos/metabolismo , Metabolismo Energético , Grasa Intraabdominal/metabolismo , Proteínas con Dominio LIM/genética , Obesidad/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Grasa Intraabdominal/citología , Proteínas con Dominio LIM/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Obesidad/etiología , Oxidación-Reducción , Fosforilación Oxidativa , PPAR gamma/metabolismo , Unión Proteica
2.
Physiol Plant ; 146(2): 184-91, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22380570

RESUMEN

The vulnerability of the xylem to cavitation is an important trait in plant drought resistance and has been quantified by several methods. We present a modified method for the simultaneous measurement of cavitations, recorded as ultrasound acoustic emissions (UAEs), and the water potential, measured with a thermocouple psychrometer, in small samples of conifer wood. Analyzing the amplitude of the individual signals showed that a first phase, during which the mean amplitude increased, was followed by a second phase with distinctly lower signal amplitudes. We provide a method to separate the two groups of signals and show that for many samples plausible vulnerability curves require rejecting late low-energy UAEs. These very likely do not result from cavitations. This method was used to analyze the differences between juvenile wood, and early and late mature wood in Picea abies (L.) Karst. Juvenile earlywood was more resistant to cavitation than mature earlywood or latewood, which we relate to the tracheid anatomy of the samples.


Asunto(s)
Picea/fisiología , Ultrasonido/métodos , Agua/metabolismo , Madera/anatomía & histología , Madera/metabolismo , Xilema/anatomía & histología , Xilema/metabolismo , Adaptación Fisiológica , Transporte Biológico , Sequías , Procesamiento de Señales Asistido por Computador , Estrés Fisiológico , Ultrasonido/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...