Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834913

RESUMEN

The hallmark of non-selective autophagy is the formation of cup-shaped phagophores that capture bulk cytoplasm. The process is accompanied by the conjugation of LC3B to phagophores by an E3 ligase complex comprising ATG12-ATG5 and ATG16L1. Here we combined two complementary reconstitution approaches to reveal the function of LC3B and its ligase complex during phagophore expansion. We found that LC3B forms together with ATG12-ATG5-ATG16L1 a membrane coat that remodels flat membranes into cups that closely resemble phagophores. Mechanistically, we revealed that cup formation strictly depends on a close collaboration between LC3B and ATG16L1. Moreover, only LC3B, but no other member of the ATG8 protein family, promotes cup formation. ATG16L1 truncates that lacked the C-terminal membrane binding domain catalyzed LC3B lipidation but failed to assemble coats, did not promote cup formation and inhibited the biogenesis of non-selective autophagosomes. Our results thus demonstrate that ATG16L1 and LC3B induce and stabilize the characteristic cup-like shape of phagophores.

2.
Curr Opin Cell Biol ; 75: 102064, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35240373

RESUMEN

The homeostasis of cells depends on the selective degradation of damaged or superfluous cellular components. Autophagy is the major pathway that recognizes such components, sequesters them in de novo formed autophagosomes and delivers them to lysosomes for degradation. The recognition of specific cargo and the biogenesis of autophagosomes involve a dedicated machinery of autophagy related (ATG) proteins. Intense research over the past decades has revealed insights into the function of autophagy proteins and mechanisms that govern cargo recognition. Other aspects including the molecular mechanisms involved in the onset of human diseases are less well understood. However, autophagic dysfunctions, caused by age related decline in autophagy or mutations in ATG proteins, are directly related to a large number of human pathologies including neurodegenerative disorders. Here, we review most recent discoveries and breakthroughs in selective autophagy and its relationship to neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Autofagosomas , Autofagia , Humanos , Lisosomas , Agregado de Proteínas
3.
Fac Rev ; 10: 17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718934

RESUMEN

The ongoing pandemic of the new severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused more than one million deaths, overwhelmed many public health systems, and led to a worldwide economic recession. This has raised an unprecedented need to develop antiviral drugs and vaccines, which requires profound knowledge of the fundamental pathology of the virus, including its entry, replication, and release from host cells. The genome of coronaviruses comprises around 30 kb of positive single-stranded RNA, representing one of the largest RNA genomes of viruses. The 5' part of the genome encodes a large polyprotein, PP1ab, which gives rise to 16 non-structural proteins (nsp1- nsp16). Two proteases encoded in nsp3 and nsp5 cleave the polyprotein into individual proteins. Most nsps belong to the viral replicase complex that promotes replication of the viral genome and translation of structural proteins by producing subgenomic mRNAs. The replicase complexes are found on double-membrane vesicles (DMVs) that contain viral double-stranded RNA. Expression of a small subset of viral proteins, including nsp3 and nsp4, is sufficient to induce formation of these DMVs in human cells, suggesting that both proteins deform host membranes into such structures. We will discuss the formation of DMVs and provide an overview of other membrane remodeling processes that are induced by coronaviruses.

4.
Proc Natl Acad Sci U S A ; 117(43): 26784-26794, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33055216

RESUMEN

The obligate intracellular bacteria Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted diseases, multiply in a vacuolar compartment, the inclusion. From this niche, they secrete "effector" proteins, that modify cellular activities to enable bacterial survival and proliferation. Here, we show that the host autophagy-related protein 16-1 (ATG16L1) restricts inclusion growth and that this effect is counteracted by the secretion of the bacterial effector CT622/TaiP (translocated ATG16L1 interacting protein). ATG16L1 is mostly known for its role in the lipidation of the human homologs of ATG8 (i.e., LC3 and homologs) on double membranes during autophagy as well as on single membranes during LC3-associated phagocytosis and other LC3-lipidation events. Unexpectedly, the LC3-lipidation-related functions of ATG16L1 are not required for restricting inclusion development. We show that the carboxyl-terminal domain of TaiP exposes a mimic of an eukaryotic ATG16L1-binding motif that binds to ATG16L1's WD40 domain. By doing so, TaiP prevents ATG16L1 interaction with the integral membrane protein TMEM59 and allows the rerouting of Rab6-positive compartments toward the inclusion. The discovery that one bacterial effector evolved to target ATG16L1's engagement in intracellular traffic rather than in LC3 lipidation brings this "secondary" activity of ATG16L1 in full light and emphasizes its importance for maintaining host cell homeostasis.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Chlamydia trachomatis/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión al GTP rab/metabolismo
5.
Nat Commun ; 11(1): 2993, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532970

RESUMEN

The accumulation of protein aggregates is involved in the onset of many neurodegenerative diseases. Aggrephagy is a selective type of autophagy that counteracts neurodegeneration by degrading such aggregates. In this study, we found that LC3C cooperates with lysosomal TECPR1 to promote the degradation of disease-related protein aggregates in neural stem cells. The N-terminal WD-repeat domain of TECPR1 selectively binds LC3C which decorates matured autophagosomes. The interaction of LC3C and TECPR1 promotes the recruitment of autophagosomes to lysosomes for degradation. Augmented expression of TECPR1 in neural stem cells reduces the number of protein aggregates by promoting their autophagic clearance, whereas knockdown of LC3C inhibits aggrephagy. The PH domain of TECPR1 selectively interacts with PtdIns(4)P to target TECPR1 to PtdIns(4)P containing lysosomes. Exchanging the PH against a tandem-FYVE domain targets TECPR1 ectopically to endosomes. This leads to an accumulation of LC3C autophagosomes at endosomes and prevents their delivery to lysosomes.


Asunto(s)
Autofagosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Autofagosomas/ultraestructura , Autofagia/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Endosomas/metabolismo , Células HeLa , Humanos , Lisosomas/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Inmunoelectrónica , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Células-Madre Neurales/citología , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Transporte de Proteínas , Proteolisis , Interferencia de ARN
6.
PLoS Biol ; 17(7): e3000377, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356628

RESUMEN

Autophagy recycles cytoplasmic components by sequestering them in double membrane-surrounded autophagosomes. The two proteins Atg11 and Atg17 are scaffolding components of the Atg1 kinase complex. Atg17 recruits and tethers Atg9-donor vesicles, and the corresponding Atg1 kinase complex induces the formation of nonselective autophagosomes. Atg11 initiates selective autophagy and coordinates the switch to nonselective autophagy by recruiting Atg17. The molecular function of Atg11 remained, however, less well understood. Here, we demonstrate that Atg11 is activated by cargo through a direct interaction with autophagy receptors. Activated Atg11 dimerizes and tethers Atg9 vesicles, which leads to the nucleation of phagophores in direct vicinity of cargo. Starvation reciprocally regulates the activity of both tethering factors by initiating the degradation of Atg11 while Atg17 is activated. This allows Atg17 to sequester and tether Atg9 vesicles independent of cargo to nucleate nonselective phagophores. Our data reveal insights into the molecular mechanisms governing cargo selection and specificity in autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Liposomas Unilamelares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Relacionadas con la Autofagia/química , Unión Competitiva , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
7.
Curr Biol ; 29(14): R671-R677, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336079

RESUMEN

In 1955, the biologist and Nobel Prize laureate Christian de Duve discovered that cells possess specialized organelles filled with hydrolytic enzymes and he called these organelles lysosomes. At the same time, electron microscopy studies by Novikoff and colleagues showed that intracellular dense bodies, which later turned out to be lysosomes, contain cytoplasmic components. Together, these groundbreaking observations revealed that cells can deliver cytoplasmic components to lysosomes for degradation. The hallmark of this degradative process, which de Duve called autophagy, is the formation of double-membrane-limited vesicles. Further morphological characterization of these vesicles (autophagosomes) revealed that they mainly contain bulk cytoplasm. Although this suggested that autophagy leads to a non-selective degradation of cytoplasmic material, de Duve anticipated that a regulated and selective type of this pathway must also exist. Today we know that, under normal conditions, macroautophagy is a highly selective pathway that sequesters damaged or superfluous material from the cytoplasm through the formation of double-membrane-limited autophagosomes. Upon fusion with lysosomes, the content of autophagosomes is degraded and the resulting building blocks are released into the cytoplasm. However, in response to cytotoxic stress or starvation, cells start to produce autophagosomes that capture bulk cytoplasm non-selectively. This stress response is essential for cells to survive adverse environmental conditions, whereas the selective sequestration of cargo is important to maintain cellular homeostasis.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Lisosomas/metabolismo , Citosol/metabolismo , Macroautofagia/fisiología
8.
Methods Mol Biol ; 1880: 119-133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30610692

RESUMEN

The hallmark of macroautophagy is the de novo generation of a membrane structure that collects cytoplasmic material and delivers it to lysosomes for degradation. The nucleation of this precursor membrane, termed phagophore, involves the coordinated assembly of the Atg1-kinase complex and the recruitment of Atg9 vesicles. The latter represents one important membrane source in order to produce phagophores in vivo. We explain how the process of phagophore nucleation can be reconstituted from purified components in vitro. We describe the assembly of the ~500 kDa pentameric Atg1-kinase complex from its purified subunits. We also explain how Atg9-donor vesicles are generated in vitro to study the interaction of Atg9 and Atg1-kinase complexes by floatation experiments.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Liposomas/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/aislamiento & purificación , Cromatografía de Afinidad/métodos , Cromatografía en Gel/métodos , Clonación Molecular/métodos , Escherichia coli/genética , Humanos , Liposomas/química , Multimerización de Proteína
9.
J Cell Sci ; 132(4)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381358

RESUMEN

Autophagy is one of the most elaborative membrane remodeling systems in eukaryotic cells. Its major function is to recycle cytoplasmic material by delivering it to lysosomes for degradation. To achieve this, a membrane cisterna is formed that gradually captures cargo such as organelles or protein aggregates. The diversity of cargo requires autophagy to be highly versatile to adapt the shape of the phagophore to its substrate. Upon closure of the phagophore, a double-membrane-surrounded autophagosome is formed that eventually fuses with lysosomes. In response to environmental cues such as cytotoxicity or starvation, bulk cytoplasm can be captured and delivered to lysosomes. Autophagy thus supports cellular survival under adverse conditions. During the past decades, groundbreaking genetic and cell biological studies have identified the core machinery involved in the process. In this Review, we are focusing on in vitro reconstitution approaches to decipher the details and spatiotemporal control of autophagy, and how such studies contributed to our current understanding of the pathways in yeast and mammals. We highlight studies that revealed the function of the autophagy machinery at a molecular level with respect to its capacity to remodel membranes.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Lisosomas/metabolismo , Fagosomas/metabolismo , Animales , Humanos , Membranas/metabolismo , Proteínas/metabolismo
10.
Interface Focus ; 8(5): 20180025, 2018 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30443326

RESUMEN

Autophagy is one of the most versatile recycling systems of eukaryotic cells. It degrades diverse cytoplasmic components such as organelles, protein aggregates, ribosomes and multi-enzyme complexes. Not surprisingly, any failure of autophagy or reduced activity of the pathway contributes to the onset of various pathologies, including neurodegeneration, cancer and metabolic disorders such as diabetes or immune diseases. Furthermore, autophagy contributes to the innate immune response and combats bacterial or viral pathogens. The hallmark of macroautophagy is the formation of a membrane sack that sequesters cytoplasmic cargo and delivers it to lysosomes for degradation. More than 40 autophagy-related (ATG) proteins have so far been identified. A unique protein-conjugation system represents one of the core components of this highly elaborate machinery. It conjugates six homologous ATG8 family proteins to the autophagic membrane. In this review, we summarize the current knowledge regarding the various functions of ATG8 proteins in autophagy and briefly discuss how physical approaches and in vitro reconstitution contributed in deciphering their function.

11.
Autophagy ; 13(3): 629-630, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28121213

RESUMEN

Macroautophagy delivers cytoplasmic material to lysosomal/vacuolar compartments for degradation. Conserved multisubunit complexes, composed of autophagy-related (Atg) proteins, initiate the formation of membrane precursors, termed phagophores. Under physiological conditions these cup-shaped structures can capture cytoplasmic material highly selectively. Starvation or cytotoxic stresses, however, initiate the formation of much larger phagophores to enclose cytoplasm nonselectively. The biogenesis of nonselective autophagosomes is initiated by the hierarchical assembly of the Atg1 kinase complex and the recruitment of Atg9 vesicles at the phagophore assembly site (PAS). In this punctum we summarize our recent findings regarding tethering of Atg9 vesicles by the Atg1 kinase complex. We discuss membrane tethering by and activation of its central subunit Atg17 in the context of other canonical membrane tethering factors. Our results show that Atg17 suffices to bind and tether Atg9 vesicles. The Atg31-Atg29 subcomplex inhibits Atg17 activity, and activation of Atg17 depends on the formation of the Atg1 kinase complex that involves recruiting Atg1-Atg13. Our studies lead to a model of unconventional membrane tethering in autophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Humanos , Modelos Biológicos
12.
FEBS J ; 283(21): 3886-3888, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27870268

RESUMEN

Autophagy is an essential and fundamental pathway that clears unwanted or damaged material from the cell. Initiation of autophagy was previously shown to be dependent on the Ulk1/2 kinase complex. In this issue of The FEBS Journal, Braden and Neufeld investigated the Ulk3 homolog in Drosophila, and proposed a novel, Ulk1/2 independent pathway for autophagy initiation.


Asunto(s)
Autofagia
13.
Nat Commun ; 7: 10338, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26753620

RESUMEN

Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.


Asunto(s)
Autofagia/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Dicroismo Circular , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Inmunoprecipitación , Técnicas In Vitro , Liposomas , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Biogénesis de Organelos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares , Espectrometría de Masas en Tándem
14.
FEBS J ; 283(11): 2034-43, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26797728

RESUMEN

Autophagy is a versatile recycling pathway that delivers cytoplasmic contents to lysosomal compartments for degradation. It involves the formation of a cup-shaped membrane that expands to capture cargo. After the cargo has been entirely enclosed, the membrane is sealed to generate a double-membrane-enclosed compartment, termed the autophagosome. Depending on the physiological state of the cell, the cargo is selected either specifically or non-specifically. The process involves a highly conserved set of autophagy-related proteins. Reconstitution of their action on model membranes in vitro has contributed tremendously to our understanding of autophagosome biogenesis. This review will focus on various in vitro techniques that have been employed to decipher the function of the autophagic core machinery.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Comunicación Celular/genética , Técnicas In Vitro , Proteínas/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Proteínas/genética , Proteolisis
15.
Autophagy ; 10(7): 1343-5, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24963637

RESUMEN

The conjugation of the small ubiquitin (Ub)-like protein Atg8 to autophagic membranes is a key step during the expansion of phagophores. This reaction is driven by 2 interconnected Ub-like conjugation systems. The second system conjugates the Ub-like protein Atg12 to Atg5. The resulting conjugate catalyzes the covalent attachment of Atg8 to membranes. Atg12-Atg5, however, constitutively associates with the functionally less well-characterized coiled-coil protein Atg16. By reconstituting the conjugation of Atg8 to membranes in vitro, we showed that after Atg8 has been attached to phosphatidylethanolamine (PE), it recruits Atg12-Atg5 to membranes by recognizing a noncanonical Atg8-interacting motif (AIM) within Atg12. Atg16 crosslinks Atg8-PE-Atg12-Atg5 complexes to form a continuous 2-dimensional membrane scaffold with meshwork-like architecture. Apparently, scaffold formation is required to generate productive autophagosomes and to deliver autophagic cargo to the vacuole in vivo.


Asunto(s)
Autofagia , Membrana Celular/metabolismo , Fagosomas/metabolismo , Animales , Proteínas de Microfilamentos , Modelos Biológicos
16.
Cell ; 156(3): 469-81, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485455

RESUMEN

Autophagy is a catabolic pathway that sequesters undesired cellular material into autophagosomes for delivery to lysosomes for degradation. A key step in the pathway is the covalent conjugation of the ubiquitin-related protein Atg8 to phosphatidylethanolamine (Atg8-PE) in autophagic membranes by a complex consisting of Atg16 and the Atg12-Atg5 conjugate. Atg8 controls the expansion of autophagic precursor membranes, but the underlying mechanism remains unclear. Here, we reconstitute Atg8 conjugation on giant unilamellar vesicles and supported lipid bilayers. We found that Atg8-PE associates with Atg12-Atg5-Atg16 into a membrane scaffold. By contrast, scaffold formation is counteracted by the mitochondrial cargo adaptor Atg32 through competition with Atg12-Atg5 for Atg8 binding. Atg4, previously known to recycle Atg8 from membranes, disassembles the scaffold. Importantly, mutants of Atg12 and Atg16 deficient in scaffold formation in vitro impair autophagy in vivo. This suggests that autophagic scaffolds are critical for phagophore biogenesis and thus autophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
17.
Methods Cell Biol ; 108: 73-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22325598

RESUMEN

Activated cell surface receptors are rapidly removed from the plasma membrane through clathrin mediated endocytosis and transported to the endosome where they are either recycled or sorted to the lysosomal pathway to be degraded. Receptors, destined for degradation in the lysosome, are packaged into intraluminal vesicles (ILVs) of endosomes by a reaction that is topologically unrelated to other budding reactions in cells. First, receptors are clustered at the endosomal membrane and receptor-rich membrane patches then bud towards the lumen of the endosome. The nascent membrane buds are finally cleaved from the limiting membrane to release cargo-bearing vesicles into the endosomal interior. The molecular machinery that drives multivesicular body biogenesis, the endosomal sorting complex required for transport (ESCRT) machinery, has been identified through genetic screens. It consists of the cytoplasmic, hetero-multimeric complexes ESCRT-0, -I, -II, and -III, and of the Vps4/VtaI complex. Although the ESCRT machinery has been characterized extensively using cell-biological and biochemical approaches, the molecular mechanism of multivesicular body biogenesis remained unclear. In this chapter, I will present in vitro reconstitution systems that we used to study ESCRT-driven membrane remodeling reactions with purified components on artificial membranes. This includes generation of large and giant unilamellar liposomes, as well as in vitro reconstitution reactions of fluorescently labeled proteins on such membranes. I will discuss both, the potential of in vitro systems to analyze membrane-remodeling events and also their limitations.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Cuerpos Multivesiculares/química , Algoritmos , Animales , Transporte Biológico , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Modelos Biológicos , Unión Proteica , Liposomas Unilamelares/química
18.
Nature ; 464(7290): 864-9, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20305637

RESUMEN

When internalized receptors and other cargo are destined for lysosomal degradation, they are ubiquitinated and sorted by the endosomal sorting complex required for transport (ESCRT) complexes 0, I, II and III into multivesicular bodies. Multivesicular bodies are formed when cargo-rich patches of the limiting membrane of endosomes bud inwards by an unknown mechanism and are then cleaved to yield cargo-bearing intralumenal vesicles. The biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, -I, -II and -III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. Here we show that ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and ESCRT-II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and ESCRT-II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/química , Cuerpos Multivesiculares/metabolismo , Polaridad Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
19.
Dev Cell ; 17(2): 234-43, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19686684

RESUMEN

The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 A resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III-driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II-VPS20(2) supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle.


Asunto(s)
Endosomas/metabolismo , Complejos Multiproteicos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...