Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Alemán | MEDLINE | ID: mdl-38175194

RESUMEN

The increasing digitization of the healthcare system is leading to a growing volume of health data. Leveraging this data beyond its initial collection purpose for secondary use can provide valuable insights into diagnostics, treatment processes, and the quality of care. The Health Data Lab (HDL) will provide infrastructure for this purpose. Both the protection of patient privacy and optimal analytical capabilities are of central importance in this context, and artificial intelligence (AI) provides two opportunities. First, it enables the analysis of large volumes of data with flexible models, which means that hidden correlations and patterns can be discovered. Second, synthetic - that is, artificial - data generated by AI can protect privacy.This paper describes the KI-FDZ project, which aims to investigate innovative technologies that can support the secure provision of health data for secondary research purposes. A multi-layered approach is investigated in which data-level measures can be combined in different ways with processing in secure environments. To this end, anonymization and synthetization methods, among others, are evaluated based on two concrete application examples. Moreover, it is examined how the creation of machine learning pipelines and the execution of AI algorithms can be supported in secure processing environments. Preliminary results indicate that this approach can achieve a high level of protection while maintaining data validity. The approach investigated in the project can be an important building block in the secure secondary use of health data.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Alemania , Atención a la Salud
2.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37831086

RESUMEN

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Asunto(s)
Proteína 58 DEAD Box , Isoleucina , Receptores Inmunológicos , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Tolerancia Inmunológica , Isoleucina/genética , ARN Bicatenario/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
3.
Science ; 379(6632): 586-591, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758070

RESUMEN

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Asunto(s)
Alphainfluenzavirus , Antivirales , Betainfluenzavirus , Productos Biológicos , Inhibidores Enzimáticos , Metiltransferasas , Caperuzas de ARN , Tubercidina , Replicación Viral , Animales , Humanos , Ratones , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , Replicación Viral/efectos de los fármacos , Alphainfluenzavirus/efectos de los fármacos , Betainfluenzavirus/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Antivirales/química , Antivirales/farmacología , Tubercidina/análogos & derivados , Tubercidina/farmacología , Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Streptomyces/química , Simulación por Computador , Células A549
4.
Sci Rep ; 6: 38405, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941826

RESUMEN

Excessive inflammation can cause damage to host cells and tissues. Thus, the secretion of inflammatory cytokines is tightly regulated at transcriptional, post-transcriptional and post-translational levels and influenced by cellular stress responses, such as endoplasmic reticulum (ER) stress or apoptosis. Here, we describe a novel type of post-transcriptional regulation of the type-I-IFN response that was induced in monocytes by cytosolic transfection of a short immunomodulatory DNA (imDNA), a G-tetrad forming CpG-free derivative of the TLR9 agonist ODN2216. When co-transfected with cytosolic nucleic acid stimuli (DNA or 3P-dsRNA), imDNA induced caspase-3 activation, translational shutdown and upregulation of stress-induced genes. This stress response inhibited the type-I-IFN induction at the translational level. By contrast, the induction of most type-I-IFN-associated chemokines, including Chemokine (C-X-C Motif) Ligand (CXCL)10 was not affected, suggesting a differential translational regulation of chemokines and type-I-IFN. Pan-caspase inhibitors could restore IFN-ß secretion, yet, strikingly, caspase inhibition did not restore global translation but instead induced a compensatory increase in the transcription of IFN-ß but not CXCL10. Altogether, our data provide evidence for a differential regulation of cytokine release at both transcriptional and post-transcriptional levels which suppresses type-I-IFN induction yet allows for CXCL10 secretion during imDNA-induced cellular stress.


Asunto(s)
Quimiocina CXCL10/metabolismo , Interferón-alfa/metabolismo , Leucocitos Mononucleares/metabolismo , Células Cultivadas , Quimiocina CXCL10/genética , Secuencia Rica en GC , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Interferón beta/genética , Interferón beta/metabolismo , Oligonucleótidos/farmacología , Biosíntesis de Proteínas , Estrés Fisiológico
5.
Nat Immunol ; 16(10): 1025-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26343537

RESUMEN

Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.


Asunto(s)
ADN Complementario/química , ADN Viral/química , ADN Viral/inmunología , VIH-1/genética , VIH-1/inmunología , Interferón-alfa/inmunología , Nucleotidiltransferasas/genética , Animales , Línea Celular , Células Cultivadas , ADN Complementario/genética , ADN Complementario/inmunología , ADN Viral/genética , Células HEK293 , Humanos , Inmunización , Ratones
6.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187414

RESUMEN

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Asunto(s)
ARN Helicasas DEAD-box/genética , Tolerancia Inmunológica/genética , Procesamiento Postranscripcional del ARN/genética , ARN/genética , Virus de la Fiebre Amarilla/enzimología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteína 58 DEAD Box , Activación Enzimática/genética , Activación Enzimática/inmunología , Histidina/genética , Humanos , Metilación , Metiltransferasas/genética , Ratones , Estructura Terciaria de Proteína , ARN/química , ARN/inmunología , ARN Viral/inmunología , Receptores Inmunológicos , Virus de la Fiebre Amarilla/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA