Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epilepsy Res ; 190: 107101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36758444

RESUMEN

Missense variants in the synaptic vesicle glycoprotein SV2A gene have been previously found in a few individuals with epilepsy. Adverse reaction to levetiracetam in individuals with various variants of this gene has recently been described. Here, we report on a family with several members affected by epilepsy. In affected members of this family, we identified a variant in the SV2A gene (NM_014849.5: c.1978 G>A, p.(Gly660Arg). This family case further supports the role of the SV2A gene in autosomal dominant epilepsy. It provides new information on the course of epilepsy in people with variants in the SV2A gene who have never been treated with SV2A agonists and specific neurodevelopmental features of this syndrome.


Asunto(s)
Artrogriposis , Epilepsia , Humanos , Artrogriposis/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/inducido químicamente , Levetiracetam/uso terapéutico , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética , Variación Genética
2.
Front Neurol ; 14: 1316933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328757

RESUMEN

Introduction: Targeted Next-Generation Sequencing Panels (TNGSP) have become a standard in global clinical practice. Instead of questioning the necessity of next-generation sequencing in epilepsy patients, contemporary large-scale research focuses on factors such as the size of TNGSP, the comparative advantages of exome or genome-wide sequencing over TNGSP, and the impact of clinical, electrophysiological, and demographic variables on genetic test performance. This study aims to elucidate the demographic and clinical factors influencing the performance of TNGSP in 138 Polish patients with epilepsy, recognizing the pivotal role of genetic testing in guiding patient management and therapy. Methods: A retrospective analysis was conducted on patients from a genetic clinic in Poznan, Poland, who underwent commercial gene panel studies at Invitae Corporation (USA) between 2020 and 2022. Patient groups were defined based on the age of onset of the first epileptic seizures, seizure type, gender, fever dependence of seizures, presence of intellectual disability or developmental delay, abnormalities in MRI, and the presence of dysmorphic features or congenital malformations. Seizure classification followed the 2017 ILAE criteria. Results: Among the 138 patients, 30 (21.7%) exhibited a pathogenic or likely pathogenic variant, with a distribution of 20.7% in males and 22.5% in females. Diagnostic performance correlated with the patient's age at the onset of the first seizure and the type of seizure. Predominant variants were identified in the SCN1A, PRRT2, CDKL5, DEPDC5, TSC2, and SLC2A1 genes. Additionally, 12 genes (CACNA1A, SCN2A, GRIN2A, KCNQ2, CHD2, DYNC1H1, NEXMIF, SCN1B, DDX3X, EEF1A2, NPRL3, UBE3A) exhibited single instances of damage. Notably, novel variants were discovered in DEPDC5, SCN1A, TSC2, CDKL5, NPRL3, DYNC1H1, CHD2, and DDX3X. Discussion: Identified variants were present in genes previously recognized in both European and non-European populations. A thorough examination of Variants of Uncertain Significance (VUSs), specifically focusing on gene copy number changes, may unveil more extensive chromosomal aberrations. The relatively frequent occurrence of pathological variants in X chromosome-linked genes in girls warrants further investigation, challenging the prevailing notion of male predominance in X-linked epilepsy.

3.
Arch Med Sci ; 17(4): 965-991, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336026

RESUMEN

Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.

4.
Genes (Basel) ; 12(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201538

RESUMEN

CLN8 is a ubiquitously expressed membrane-spanning protein that localizes primarily in the ER, with partial localization in the ER-Golgi intermediate compartment. Mutations in CLN8 cause late-infantile neuronal ceroid lipofuscinosis (LINCL). We describe a female pediatric patient with LINCL. She exhibited a typical phenotype associated with LINCL, except she did not present spontaneous myoclonus, her symptoms occurrence was slower and developed focal sensory visual seizures. In addition, whole-exome sequencing identified a novel homozygous variant in CLN8, c.531G>T, resulting in p.Trp177Cys. Ultrastructural examination featured abundant lipofuscin deposits within mucosal cells, macrophages, and monocytes. We report a novel CLN8 mutation as a cause for NCL8 in a girl with developmental delay and epilepsy, cerebellar syndrome, visual loss, and progressive cognitive and motor regression. This case, together with an analysis of the available literature, emphasizes the existence of a continuous spectrum of CLN8-associated phenotypes rather than a sharp distinction between them.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/patología , Linaje , Secuenciación del Exoma , Adulto Joven
5.
J Appl Genet ; 62(3): 477-485, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33982229

RESUMEN

Mowat-Wilson syndrome is a rare neurodevelopmental disorder caused by pathogenic variants in the ZEB2 gene, intragenic deletions of the ZEB2 gene, and microdeletions in the critical chromosomal region 2q22-23, where the ZEB2 gene is located. Mowat-Wilson syndrome is characterized by typical facial features that change with the age, severe developmental delay with intellectual disability, and multiple congenital abnormalities. The authors describe the clinical and genetic aspects of 28th patients with Mowat-Wilson syndrome diagnosed in Poland. Characteristic dysmorphic features, psychomotor retardation, intellectual disability, and congenital anomalies were present in all cases. The incidence of most common congenital anomalies (heart defect, Hirschsprung disease, brain defects) was similar to presented in literature. Epilepsy was less common compared to previously reported cases. Although the spectrum of disorders in patients with Mowat-Wilson syndrome is wide, knowledge of characteristic dysmorphic features awareness of accompanying abnormalities, especially intellectual disability, improves detection of the syndrome.


Asunto(s)
Facies , Enfermedad de Hirschsprung , Discapacidad Intelectual , Microcefalia , Enfermedad de Hirschsprung/diagnóstico , Enfermedad de Hirschsprung/genética , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Polonia , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
6.
Sci Transl Med ; 12(560)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908004

RESUMEN

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid, which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based on precision medicine strategies in PD.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas , Exones/genética , Humanos , Mutación/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...