Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Sci Rep ; 14(1): 20625, 2024 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232051

RESUMEN

Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.


Asunto(s)
Anopheles , Código de Barras del ADN Taxonómico , Ecosistema , Mosquitos Vectores , Plasmodium falciparum , Animales , Mosquitos Vectores/parasitología , Mosquitos Vectores/genética , Anopheles/parasitología , Anopheles/genética , Anopheles/metabolismo , Kenia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria/transmisión , Malaria/parasitología , Acacia/metabolismo , Acacia/parasitología , Acacia/genética , Conducta Alimentaria/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética
2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125661

RESUMEN

The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , NADPH-Ferrihemoproteína Reductasa , Piretrinas , Anopheles/genética , Anopheles/efectos de los fármacos , Anopheles/enzimología , Anopheles/metabolismo , Animales , Resistencia a los Insecticidas/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , NADPH-Ferrihemoproteína Reductasa/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Piretrinas/farmacología , Piretrinas/metabolismo , Oxidación-Reducción , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Especificidad por Sustrato , Nitrilos/metabolismo , Nitrilos/farmacología , Permetrina/farmacología
3.
Cell Rep ; 43(8): 114566, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39088320

RESUMEN

Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.


Asunto(s)
Anopheles , Sistema Enzimático del Citocromo P-450 , Guanidinas , Resistencia a los Insecticidas , Insecticidas , Malaria , Neonicotinoides , Piretrinas , Tiazoles , Animales , Tiazoles/farmacología , Guanidinas/farmacología , Resistencia a los Insecticidas/genética , Anopheles/efectos de los fármacos , Anopheles/genética , Piretrinas/farmacología , Piretrinas/metabolismo , Neonicotinoides/farmacología , Insecticidas/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Especificidad por Sustrato , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
4.
BMC Infect Dis ; 24(1): 733, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054424

RESUMEN

Elevated resistance to pyrethroids in major malaria vectors has led to the introduction of novel insecticides including neonicotinoids. There is a fear that efficacy of these new insecticides could be impacted by cross-resistance mechanisms from metabolic resistance to pyrethroids. In this study, after evaluating the resistance to deltamethrin, clothianidin and mixture of clothianidin + deltamethrin in the lab using CDC bottle assays, the efficacy of the new IRS formulation Fludora® Fusion was tested in comparison to clothianidin and deltamethrin applied alone using experimental hut trials against wild free-flying pyrethroid-resistant Anopheles funestus from Elende and field An. gambiae collected from Nkolondom reared in the lab and released in the huts. Additionally, cone tests on the treated walls were performed each month for a period of twelve months to evaluate the residual efficacy of the sprayed products. Furthermore, the L1014F-kdr target-site mutation and the L119F-GSTe2 mediated metabolic resistance to pyrethroids were genotyped on a subset of mosquitoes from the EHT to assess the potential cross-resistance. All Anopheles species tested were fully susceptible to clothianidin and clothianidin + deltamethrin mixture in CDC bottle assay while resistance was noted to deltamethrin. Accordingly, Fludora® Fusion (62.83% vs 42.42%) and clothianidin (64.42% vs 42.42%) induced significantly higher mortality rates in EHT than deltamethrin (42.42%) against free flying An. funestus from Elende in month 1 (M1) and no significant difference in mortality was observed between the first (M1) and sixth (M6) months of the evaluation (P > 0.05). However, lower mortality rates were recorded against An. gambiae s.s from Nkolondom (mortality rates 50%, 45.56% and 26.68%). In-situ cone test on the wall showed a high residual efficacy of Fludora® Fusion and clothianidin on the susceptible strain KISUMU (> 12 months) and moderately on the highly pyrethroid-resistant An. gambiae strain from Nkolondom (6 months). Interestingly, no association was observed between the L119F-GSTe2 mutation and the ability of mosquitoes to survive exposure to Fludora® Fusion, whereas a trend was observed with the L1014F-kdr mutation. This study highlights that Fludora® Fusion, through its clothianidin component, has good potential of controlling pyrethroid-resistant mosquitoes with prolonged residual efficacy. This could be therefore an appropriate tool for vector control in several malaria endemic regions.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Animales , Piretrinas/farmacología , Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Control de Mosquitos/métodos , Camerún , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Malaria/transmisión , Malaria/prevención & control , Guanidinas/farmacología , Nitrilos/farmacología , Femenino , Tiazoles/farmacología , Neonicotinoides/farmacología , Vivienda
5.
PLoS Genet ; 20(7): e1011344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39074161

RESUMEN

Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.


Asunto(s)
Anopheles , Sistema Enzimático del Citocromo P-450 , Elementos Transponibles de ADN , Resistencia a los Insecticidas , Insecticidas , Malaria , Mosquitos Vectores , Piretrinas , Animales , Anopheles/genética , Anopheles/parasitología , Anopheles/efectos de los fármacos , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/efectos de los fármacos , Malaria/transmisión , Malaria/parasitología , Malaria/genética , Elementos Transponibles de ADN/genética , Sistema Enzimático del Citocromo P-450/genética , Insecticidas/farmacología , Uganda , Humanos , Camerún
6.
Med Vet Entomol ; 38(2): 216-226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563591

RESUMEN

Vector control remains one of the best strategies to prevent the transmission of trypanosome infections in humans and livestock and, thus, a good way to achieve the elimination of human African trypanosomiasis and animal African trypanosomiasis. A key prerequisite for the success of any vector control strategy is the accurate identification and correct mapping of tsetse species. In this work, we updated the tsetse fly species identification and distribution in many geographical areas in Cameroon. Tsetse flies were captured from six localities in Cameroon, and their species were morphologically identified. Thereafter, DNA was extracted from legs of each tsetse fly and the length polymorphism of internal transcribed spacer-1 (ITS1) region of each fly was investigated using PCR. ITS1 DNA fragments of each tsetse species were sequenced. The sequences obtained were analysed and compared to those available in GenBank. This enabled to confirm/infirm results of the morphologic identification and then, to establish the phylogenetic relationships between tsetse species. Morphologic features allowed to clearly distinguish all the tsetse species captured in the South Region of Cameroon, that is, Glossina palpalis palpalis, G. pallicera, G. caliginea and G. nigrofusca. In the northern area, G. morsitans submorsitans could also be distinguished from G. palpalis palpalis, G. tachinoides and G. fuscipes, but these three later could not be distinguished with routine morphological characters. The ITS1 length polymorphism was high among most of the studied species and allowed to identify the following similar species with a single PCR, that is, G. palpalis palpalis with 241 or 242 bp and G. tachinoides with 221 or 222 bp, G. fuscipes with 236 or 237 bp. We also updated the old distribution of tsetse species in the areas assessed, highlighting the presence of G. palpalis palpalis instead of G. fuscipes in Mbakaou, or in sympatry with G. morsitans submorsitans in Dodeo (northern Cameroon). This study confirms the presence of G. palpalis palpalis in the Adamawa Region of Cameroon. It highlights the limits of using morphological criteria to differentiate some tsetse species. Molecular tools based on the polymorphism of ITS1 of tsetse flies can differentiate tsetse species through a simple PCR before downstream analyses or vector control planning.


Asunto(s)
Insectos Vectores , Polimorfismo Genético , Moscas Tse-Tse , Animales , Camerún , Moscas Tse-Tse/genética , Insectos Vectores/genética , Insectos Vectores/clasificación , Distribución Animal , Filogenia , ADN Intergénico/genética , Femenino , Control de Insectos , Masculino , ADN Espaciador Ribosómico/análisis , ADN Espaciador Ribosómico/genética , Análisis de Secuencia de ADN
7.
Evol Appl ; 17(2): e13641, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38410533

RESUMEN

Molecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S-transferases. RNA-seq-based genome-wide transcriptional analyses supported by quantitative PCR identified glutathione S-transferase, GSTe2 (RNA-seqFC = 2.93 and qRT-PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA-seqFC = 2.39 and qRT-PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid-resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace-1 mutation was detected in bendiocarb-resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.

8.
BMC Infect Dis ; 24(1): 133, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273227

RESUMEN

BACKGROUND: Chronic exposure of mosquito larvae to pesticide residues and cross-resistance mechanisms are major drivers of tolerance to insecticides used for vector control. This presents a concern for the efficacy of clothianidin, an agricultural neonicotinoid prequalified for Indoor Residual Spraying (IRS). METHODS: Using standard bioassays, we tested if reduced susceptibility to clothianidin can affect the efficacy of SumiShield® 50WG, one of four new IRS formulations containing clothianidin. We simultaneously monitored susceptibility to clothianidin and to SumiShield 50WG, testing adults of Anopheles gambiae, An. coluzzii and Culex sp sampled from urban, suburban and agricultural areas of Yaoundé, Cameroon. RESULTS: We found that in this geographic area, the level of susceptibility to the active ingredient predicted the efficacy of SumiShield 50WG. This formulation was very potent against populations that reached 100% mortality within 72 h of exposure to a discriminating concentration of clothianidin. By contrast, mortality leveled off at 75.4 ± 3.5% within 7 days of exposure to SumiShield 50WG in An. gambiae adults collected from a farm where the spraying of the two neonicotinoids acetamiprid and imidacloprid for crop protection is likely driving resistance to clothianidin. CONCLUSIONS: Despite the relatively small geographic extend of the study, the findings suggest that cross-resistance may impact the efficacy of some new IRS formulations and that alternative compounds could be prioritized in areas where neonicotinoid resistance is emerging.


Asunto(s)
Anopheles , Guanidinas , Insecticidas , Malaria , Piretrinas , Tiazoles , Animales , Humanos , Camerún , Control de Mosquitos , Malaria/prevención & control , Mosquitos Vectores , Neonicotinoides/farmacología , Insecticidas/farmacología , Resistencia a los Insecticidas
9.
Genomics ; 116(2): 110798, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38266739

RESUMEN

UDP-glycosyltransferases (UGTs) enzymes are pivotal in insecticide resistance by transforming hydrophobic substrates into more hydrophilic forms for efficient cell elimination. This study provides the first comprehensive investigation of Anopheles funestus UGT genes, their evolution, and their association with pyrethroid resistance. We employed a genome-wide association study using pooled sequencing (GWAS-PoolSeq) and transcriptomics on pyrethroid-resistant An. funestus, along with deep-targeted sequencing of UGTs in 80 mosquitoes Africa-wide. UGT310B2 was consistently overexpressed Africa-wide and significant gene-wise Fst differentiation was observed between resistant and susceptible populations: UGT301C2 and UGT302A3 in Malawi, and UGT306C2 in Uganda. Additionally, nonsynonymous mutations in UGT genes were identified. Gene-wise Tajima's D density curves provide insights into population structures within populations across these countries, supporting previous observations. These findings have important implications for current An. funestus control strategies facilitating the prediction of cross-resistance to other UGT-metabolised polar insecticides, thereby guiding more effective and targeted insecticide resistance management efforts.


Asunto(s)
Anopheles , Insecticidas , Piretrinas , Animales , Anopheles/genética , Glicosiltransferasas/genética , Estudio de Asociación del Genoma Completo , Insecticidas/farmacología , Piretrinas/farmacología , Mutación , Resistencia a los Insecticidas/genética
10.
Antimicrob Agents Chemother ; 67(12): e0058823, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37947766

RESUMEN

Malaria molecular surveillance remains critical in detecting and tracking emerging parasite resistance to anti-malarial drugs. The current study employed molecular techniques to determine Plasmodium species prevalence and characterize the genetic diversity of Plasmodium falciparum and Plasmodium malariae molecular markers of sulfadoxine-pyrimethamine resistance in humans and wild Anopheles mosquito populations in Cameroon. Anopheles mosquito collections and parasitological survey were conducted in villages to determine Plasmodium species infection, and genomic phenotyping of anti-folate resistance was accomplished by sequencing the dihydrofolate-reductase (dhfr) and dihydropteroate-synthase (dhps) genes of naturally circulating P. falciparum and P. malariae isolates. The malaria prevalence in Elende was 73.5% with the 5-15 years age group harboring significant P. falciparum (27%) and P. falciparum + P. malariae (19%) infections. The polymorphism breadth of the pyrimethamine-associated Pfdhfr marker revealed a near fixation (94%) of the triple-mutant -A16I51R59N108I164. The Pfdhps backbone mediating sulfadoxine resistance reveals a high frequency of the V431A436G437K540A581A613 alleles (20.8%). Similarly, the Pmdhfr N50K55L57R58S59S114F168I170 haplotype (78.4%) was predominantly detected in the asexual blood stage. In contrast, the Pmdhps- S436A437occured at 37.2% frequency. The combined quadruple N50K55L57R58S59S114F168I170_ S436G437K540A581A613 (31.9%) was the major circulating haplotype with similar frequency in humans and mosquitoes. This study highlights the increasing frequency of the P. malariae parasite mostly common in asymptomatic individuals with apparent P. falciparum infection. Interventions directed at reducing malaria transmission such as the scaling-up of SP are favoring the emergence and spread of multiple drug-resistant alleles between the human and mosquito host systems.


Asunto(s)
Anopheles , Antimaláricos , Malaria Falciparum , Malaria , Animales , Humanos , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Anopheles/genética , Alelos , Camerún/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Combinación de Medicamentos , Plasmodium falciparum , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/genética , Resistencia a Medicamentos/genética , Tetrahidrofolato Deshidrogenasa/genética
11.
BMC Infect Dis ; 23(1): 738, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891470

RESUMEN

BACKGROUND: The impact of metabolic resistance to insecticides on malaria transmission remains poorly characterised notably through application of entomological parameters. The lack of resistance markers has been one of the limiting factors preventing a robust assessment of such impact. To this end, the present study sought to investigate how the L119F-Gste2 metabolic gene influences entomological parameters underpinning mosquitos' propensity to transmit Plasmodium spp. METHODS: Longitudinal studies were carried out in Mibellon and Elende, two different eco-climatic settings in Cameroon and mosquitoes were collected using Human Landing Catch (HLC), Centre for Disease Control Light Trap (CDC-LT) and Pyrethrum Spray Catch (PSC) technics. Plasmodium sporozoite parasites were detected by TaqMan and Nested PCR, and blood meal origin by ELISA. The allele-specific PCR (AS-PCR) method was used to genotype the L119F-GSTe2 marker and association with malaria transmission was established by comparing key transmission parameters such as the Entomological Inoculation Rate (EIR) between individuals with different L119F-GSTe2 genotypes. RESULTS: An. funestus s.l was the predominant malaria vector collected during the entomological survey in both sites (86.6% and 96.4% in Elende and Mibellon, respectively) followed by An. gambiae s.l (7.5% and 2.4%, respectively). Sporozoite infection rates were very high in both collection sites (8.7% and 11% in Elende and Mibellon, respectively). An. funestus s.s exhibited a very high entomological inoculation rate (EIR) (66 ib/h/month and 792 ib/h/year) and was responsible for 98.6% of all malaria transmission events occurring in both sites. The Human Blood Index was also high in both locations (HBI = 94%). An. funestus s.s. mosquitoes with both 119 F/F (RR) and L119F (RS) genotypes had a significantly higher transmission intensity than their susceptible L/L119 (SS) counterparts (IRR = 2.2, 95%CI (1.1-5.2), p = 0.03; IRR = 2.5, 95% CI (1.2-5.8), p = 0.01 respectively). CONCLUSION: This study highlights the major role that An. funestus s.s plays in malaria transmission in Cameroon with an aggravation from GSTe2-based metabolic resistance.


Asunto(s)
Anopheles , Malaria , Plasmodium , Animales , Humanos , Malaria/prevención & control , Anopheles/genética , Anopheles/parasitología , Camerún/epidemiología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología
12.
Sci Rep ; 13(1): 14711, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679465

RESUMEN

Assessing patterns and evolution of insecticide resistance in malaria vectors is a prerequisite to design suitable control strategies. Here, we characterised resistance profile in Anopheles gambiae and Anopheles funestus in Kinshasa and assess the level of aggravation by comparing to previous 2015 estimates. Both species collected in July 2021 were highly resistant to pyrethroids at 1×, 5× and 10× concentrations (mortality < 90%) and remain fully susceptible to bendiocarb and pirimiphos methyl. Compared to 2015, Partial recovery of susceptibility was observed in A. gambiae after PBO synergist assays for both permethrin and α-cypermethrin and total recovery of susceptibility was observed for deltamethrin in 2021. In addition, the efficacy of most bednets decreased significantly in 2021. Genotyping of resistance markers revealed a near fixation of the L1014-Kdr mutation (98.3%) in A. gambiae in 2021. The frequency of the 119F-GSTe2 resistant significantly increased between 2015 and 2021 (19.6% vs 33.3%; P = 0.02) in A. funestus. Transcriptomic analysis also revealed a significant increased expression (P < 0.001) of key cytochrome P450s in A. funestus notably CYP6P9a. The escalation of pyrethroid resistance observed in Anopheles populations from Kinshasa coupled with increased frequency/expression level of resistance genes highlights an urgent need to implement tools to improve malaria vector control.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , República Democrática del Congo , Malaria/prevención & control , Mosquitos Vectores/genética , Bioensayo
13.
Artículo en Inglés | MEDLINE | ID: mdl-37693015

RESUMEN

Although Culex species are considered to be equally affected by control measures targeting malaria vectors, there is still not enough evidence of the impact of interventions such as larviciding on the distribution of these mosquito species. The present study assessed the impact of a larviciding trial targeting malaria vectors on Culex mosquito species in the city of Yaoundé, Cameroon. A cluster randomized trial comparing 13 treated clusters and 13 untreated clusters was implemented. Data were collected at baseline and during the larviciding intervention, from March 2017 to November 2020. The microbial larvicide VectoMax G was applied once every 2 weeks in the intervention areas. Adult mosquitoes were collected using CDC light traps in both intervention and non-intervention areas and compared between arms. Globally, larviciding intervention was associated with 69% reduction in aquatic habitats with Culex larvae and 36.65% reduction of adult Culex densities in houses. Adult Culex densities were reduced both indoors (35.26%) and outdoors (42.37%). No change in the composition of Culex species was recorded. The study suggests a high impact of larviciding on Culex mosquito species distribution. The impact of the intervention can be improved if typical Culex breeding habitats including pit latrines are targeted.

14.
Infect Dis Poverty ; 12(1): 81, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641108

RESUMEN

BACKGROUND: The increasing reports of resistance to pyrethroid insecticides associated with reduced efficacy of pyrethroid-only interventions highlight the urgency of introducing new non-pyrethroid-only control tools. Here, we investigated the performance of piperonyl-butoxide (PBO)-pyrethroid [Permanet 3.0 (P3.0)] and dual active ingredients (AI) nets [Interceptor G2 (IG2): containing pyrethroids and chlorfenapyr and Royal Guard (RG): containing pyrethroids and pyriproxyfen] compared to pyrethroid-only net Royal Sentry (RS) against pyrethroid-resistant malaria vectors in Cameroon. METHODS: The efficacy of these tools was firstly evaluated on Anopheles gambiae s.l. and Anopheles funestus s.l. from Gounougou, Mibellon, Mangoum, Nkolondom, and Elende using cone/tunnel assays. In addition, experimental hut trials (EHT) were performed to evaluate the performance of unwashed and 20 times washed nets in semi-field conditions. Furthermore, pyrethroid-resistant markers were genotyped in dead vs alive, blood-fed vs unfed mosquitoes after exposure to the nets to evaluate the impact of these markers on net performance. The XLSTAT software was used to calculate the various entomological outcomes and the Chi-square test was used to compare the efficacy of various nets. The odds ratio and Fisher exact test were then used to establish the statistical significance of any association between insecticide resistance markers and bed net efficacy. RESULTS: Interceptor G2 was the most effective net against wild pyrethroid-resistant An. funestus followed by Permanet 3.0. In EHT, this net induced up to 87.8% mortality [95% confidence interval (CI): 83.5-92.1%) and 55.6% (95% CI: 48.5-62.7%) after 20 washes whilst unwashed pyrethroid-only net (Royal Sentry) killed just 18.2% (95% CI: 13.4-22.9%) of host-seeking An. funestus. The unwashed Permanet 3.0 killed up to 53.8% (95% CI: 44.3-63.4%) of field-resistant mosquitoes and 47.2% (95% CI: 37.7-56.7%) when washed 20 times, and the Royal Guard 13.2% (95% CI: 9.0-17.3%) for unwashed net and 8.5% (95% CI: 5.7-11.4%) for the 20 washed net. Interceptor G2, Permanet 3.0, and Royal Guard provided better personal protection (blood-feeding inhibition 66.2%, 77.8%, and 92.8%, respectively) compared to pyrethroid-only net Royal Sentry (8.4%). Interestingly, a negative association was found between kdrw and the chlorfenapyr-based net Interceptor G2 (χ2 = 138; P < 0.0001) with homozygote-resistant mosquitoes predominantly found in the dead ones. CONCLUSIONS: The high mortality recorded with Interceptor G2 against pyrethroid-resistant malaria vectors in this study provides first semi-field evidence of high efficacy against these major malaria vectors in Cameroon encouraging the implementation of this novel net for malaria control in the country. However, the performance of this net should be established in other locations and on other major malaria vectors before implementation at a large scale.


Asunto(s)
Anopheles , Malaria , Animales , Camerún , Malaria/prevención & control , Mosquitos Vectores
15.
PLoS One ; 18(7): e0288560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37523402

RESUMEN

BACKGROUND: The double burden of malaria and helminthiasis in children poses an obvious public health challenge, particularly in terms of anemia morbidity. While both diseases frequently geographically overlap, most studies focus on mono-infection and general prevalence surveys without molecular analysis. The current study investigated the epidemiological determinants of malaria, schistosomiasis, and geohelminthiasis transmission among children in the North Region of Cameroon. METHODOLOGY: School and pre-school children aged 3-15 year-of-age were enrolled from three communities in March 2021 using a community cross-sectional design. Capillary-blood samples were obtained, and each was examined for malaria parasites using rapid-diagnostic-test (RDT), microscopy, and PCR while hemoglobin level was measured using a hemoglobinometer. Stool samples were analyzed for Schistosoma mansoni, S. guineensis, and soil-transmitted-helminthiasis (STH) infections using the Kato Katz method, and urine samples were assessed for the presence of S. haematobium eggs (including hybrids) using the standard urine filtration technique. RESULT: A malaria prevalence of 56% (277/495) was recorded by PCR as opposed to 31.5% (156/495) by microscopy and 37.8% (186/495) by RDT. Similarly, schistosomiasis was observed at prevalence levels of up to 13.3% (66/495) overall [S. haematobium (8.7%); S. mansoni (3.8%); mixed Sh/Sm (0.6%); mixed Sh/Sm/Sg (0.2%). Both infections were higher in males and the 3-9 year-of-age groups. A high frequency of PCR reported P. falciparum mono-infection of 81.9% (227/277) and mixed P. falciparum/P. malariae infection of 17.3% (48/277) was observed. Malaria-helminths co-infections were observed at 13.1% (65/495) with marked variation between P. falciparum/S. haematobium (50.8%, 33/65); P. falciparum/S. mansoni (16.9%, 11/65) and P. falciparum/Ascaris (9.2%, 6/65) (χ2 = 17.5, p = 0.00003). Anemia prevalence was 32.9% (163/495), categorically associated with P. falciparum (45.8%, 104/227), Pf/Sh (11.5%, 26/227), and Pf/Sm (3.9%, 9/227) polyparasitism. CONCLUSION: Polyparasitism with malaria and helminth infections is common in school-aged children despite periodic long-lasting insecticide-treated nets (LLINs) distribution and regular school-based praziquantel (for schistosomiasis) and albendazole (for STH) campaigns. Co-existence of Plasmodium parasites and helminths infections notably Schistosoma species among children may concurrently lead to an increase in Plasmodium infection with an enhanced risk of anemia, highlighting the necessity of an integrated approach for disease control interventions.


Asunto(s)
Anemia , Helmintiasis , Malaria Falciparum , Malaria , Esquistosomiasis , Masculino , Animales , Humanos , Preescolar , Niño , Adolescente , Estudios Transversales , Camerún/epidemiología , Estaciones del Año , Esquistosomiasis/diagnóstico , Esquistosomiasis/epidemiología , Esquistosomiasis/complicaciones , Helmintiasis/parasitología , Malaria/complicaciones , Malaria Falciparum/epidemiología , Schistosoma mansoni , Anemia/epidemiología , Anemia/complicaciones , Prevalencia , Heces/parasitología , Suelo/parasitología
16.
Trop Med Infect Dis ; 8(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37235292

RESUMEN

Evaluating the susceptibility of malaria vectors to the new WHO-recommended products is a key step before large-scale deployment. We mapped the susceptibility profile of Anopheles funestus to neonicotinoids across Africa and established the diagnostic doses of acetamiprid and imidacloprid with acetone + MERO as solvent. Indoor resting An. funestus were collected in 2021 in Cameroon, Malawi, Ghana and Uganda. Susceptibility to clothianidin, imidacloprid and acetamiprid was evaluated using CDC bottle assays and offsprings of the field-caught adults. The L119F-GSTe2 marker was genotyped to assess the potential cross-resistance between clothianidin and this DDT/pyrethroid-resistant marker. Mosquitoes were susceptible to the three neonicotinoids diluted in acetone + MERO, whereas low mortality was noticed with ethanol or acetone alone. The doses of 6 µg/mL and 4 µg/mL were established as diagnostic concentrations of imidacloprid and acetamiprid, respectively, with acetone + MERO. Pre-exposure to synergists significantly restored the susceptibility to clothianidin. A positive correlation was observed between L119F-GSTe2 mutation and clothianidin resistance with the homozygote resistant mosquitoes being more able to survive than heterozygote or susceptible. This study revealed that An. funestus populations across Africa are susceptible to neonicotinoids, and as such, this insecticide class could be effectively implemented to control this species using IRS. However, potential cross-resistance conferred by GSTe2 calls for regular resistance monitoring in the field.

17.
BMC Biol ; 21(1): 125, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226196

RESUMEN

BACKGROUND: Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. RESULTS: Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies-including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (<10%) were observed in the fully insecticide susceptible laboratory colony of An. coluzzii (Ngoussou). Several of the most commonly overexpressed metabolic resistance genes sit in these three inversions. Two commonly overexpressed genes, GSTe2 and CYP6Z2, were functionally validated. Transgenic Drosophila melanogaster flies expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities <10% in 24h). Serial deletion of the 5' intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. CONCLUSIONS: These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Acetilcolinesterasa/genética , Drosophila melanogaster , Malaria/prevención & control , Mosquitos Vectores/genética , Permetrina , Animales Modificados Genéticamente
18.
Front Cell Infect Microbiol ; 13: 1132495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056704

RESUMEN

Introduction: Despite a high fatality rate in humans, little is known about the occurrence of Crimean-Congo hemorrhagic fever virus (CCHFV) in Cameroon. Hence, this pioneer study was started with the aim of determining the prevalence of CCHFV in domestic ruminants and its potential vector ticks in Cameroon. Methods: A cross-sectional study was carried out in two livestock markets of Yaoundé to collect blood and ticks from cattle, sheep, and goats. CCHFV-specific antibodies were detected in the plasma using a commercial ELISA assay and confirmed using a modified seroneutralization test. Ticks were screened for the presence of orthonairoviruses by amplification of a fragment of the L segment using RT-PCR. Phylogeny was used to infer the genetic evolution of the virus. Results: Overall, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. The seroprevalence of CCHFV was 61.77% for all animals, with the highest rate found in cattle (433/441, 98.18%) followed by sheep (23/147, 15.65%), and goats (11/168, 6.55%), (p-value < 0.0001). The highest seroprevalence rate was found in cattle from the Far North region (100%). Overall, 1500 ticks of the Rhipicephalus (773/1500, 51.53%), Amblyomma (341/1500, 22.73%), and Hyalomma (386/1500, 25.73%) genera were screened. CCHFV was identified in one Hyalomma truncatum pool collected from cattle. Phylogenetic analysis of the L segment classified this CCHFV strain within the African genotype III. Conclusion: These seroprevalence results call for additional epidemiological studies on CCHFV, especially among at-risk human and animal populations in high-risk areas of the country.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Rhipicephalus , Animales , Humanos , Bovinos , Ovinos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Ganado , Camerún/epidemiología , Estudios Seroepidemiológicos , Prevalencia , Estudios Transversales , Filogenia , Cabras
19.
IJID Reg ; 7: 84-109, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37009575

RESUMEN

Introduction: Population factors such as urbanization, socio-economic, and environmental factors are driving forces for emerging/re-emerging zoonotic diseases in Cameroon. To inform preparedness and prioritization efforts, this study mapped out epidemiological data (including prevalence) of zoonotic diseases occurring in Cameroon between 2000 and 2022 by demographic factors. Methods: Following the PRISMA guidelines, a protocol was registered in the PROSPERO database (CRD42022333059). Independent reviewers searched the PubMed, Embase, CINAHL, Cochrane, and Scopus databases on May 30, 2022 for relevant articles; duplicates were removed, and the titles, abstracts, and full texts were screened to identify eligible articles. Results: Out of 4142 articles identified, 64 eligible articles were retrieved in the database search and an additional 12 from the cited literature (N = 76). Thirty-five unique zoonoses (viral, bacterial, and parasitic) were indexed, including Cameroon priority zoonoses: anthrax, bovine tuberculosis, Ebola and Marburg virus disease, highly pathogenic avian influenza, and rabies. The number of studies varied by region, ranging from 12 in the Far North to 32 in the Centre Region. The most reported were as follows: brucellosis (random-effects pooled estimate proportion (effect size), ES 0.05%, 95% confidence interval (CI) 0.03-0.07; n = 6), dengue (ES 0.13%, 95% CI 0.06-0.22; n = 12), avian and swine influenza virus (ES 0.10%, 95% CI 0.04-0.20; n = 8), and toxoplasmosis (ES 0.49%, 95% CI 0.35-0.63; n = 11), although I 2 values were greater than 75%, thus there was high inter-study heterogeneity (P < 0.01). Conclusions: This understanding of the distribution of emerging and re-emerging zoonotic threats in Cameroon is vital to effective preventive and resource prioritization measures.

20.
Microorganisms ; 11(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36985217

RESUMEN

Microbiome composition has been associated with insecticide resistance in malaria vectors. However, the contribution of major symbionts to the increasingly reported resistance escalation remains unclear. This study explores the possible association of a specific endosymbiont, Asaia spp., with elevated levels of pyrethroid resistance driven by cytochrome P450s enzymes and voltage-gated sodium channel mutations in Anopheles funestus and Anopheles gambiae. Molecular assays were used to detect the symbiont and resistance markers (CYP6P9a/b, 6.5 kb, L1014F, and N1575Y). Overall, genotyping of key mutations revealed an association with the resistance phenotype. The prevalence of Asaia spp. in the FUMOZ_X_FANG strain was associated with the resistance phenotype at a 5X dose of deltamethrin (OR = 25.7; p = 0.002). Mosquitoes with the resistant allele for the markers tested were significantly more infected with Asaia compared to those possessing the susceptible allele. Furthermore, the abundance correlated with the resistance phenotype at 1X concentration of deltamethrin (p = 0.02, Mann-Whitney test). However, for the MANGOUM_X_KISUMU strain, findings rather revealed an association between Asaia load and the susceptible phenotype (p = 0.04, Mann-Whitney test), demonstrating a negative link between the symbiont and permethrin resistance. These bacteria should be further investigated to establish its interactions with other resistance mechanisms and cross-resistance with other insecticide classes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA