Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 224: 114146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763313

RESUMEN

Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca2+ and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture. As an example, we tested the Arabidopsis thaliana KINγ, a subunit of the SnRK2 kinase, to demonstrate that all three enzymatic centres, adenylate cyclase (AC), guanylate cyclase (GC) and PDE, are catalytically active, capable of generating and hydrolysing cAMP and cGMP. These data imply that the signal output of the KINγ subunit modulates SnRK2, consequently affecting the downstream kinome. Finally, we propose a model where a single protein subunit, KINγ, is capable of regulating cyclic mononucleotide homeostasis, thereby tuning stimulus specific signal output.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas , Arabidopsis/enzimología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Arabidopsis/metabolismo
2.
BMC Microbiol ; 24(1): 185, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802738

RESUMEN

BACKGROUND: Schaalia species are primarily found among the oral microbiota of humans and other animals. They have been associated with various infections through their involvement in biofilm formation, modulation of host responses, and interaction with other microorganisms. In this study, two strains previously indicated as Actinomyces spp. were found to be novel members of the genus Schaalia based on their whole genome sequences. RESULTS: Whole-genome sequencing revealed both strains with a genome size of 2.3 Mbp and GC contents of 65.5%. Phylogenetics analysis for taxonomic placement revealed strains NCTC 9931 and C24 as distinct species within the genus Schaalia. Overall genome-relatedness indices including digital DNA-DNA hybridization (dDDH), and average nucleotide/amino acid identity (ANI/AAI) confirmed both strains as distinct species, with values below the species boundary thresholds (dDDH < 70%, and ANI and AAI < 95%) when compared to nearest type strain Schaalia odontolytica NCTC 9935 T. Pangenome and orthologous analyses highlighted their differences in gene properties and biological functions compared to existing type strains. Additionally, the identification of genomic islands (GIs) and virulence-associated factors indicated their genetic diversity and potential adaptive capabilities, as well as potential implications for human health. Notably, CRISPR-Cas systems in strain NCTC 9931 underscore its adaptive immune mechanisms compared to strain C24. CONCLUSIONS: Based on these findings, strain NCTC 9931T (= ATCC 17982T = DSM 43331T = CIP 104728T = CCUG 18309T = NCTC 14978T = CGMCC 1.90328T) represents a novel species, for which the name Schaalia dentiphila subsp. dentiphila sp. nov. subsp. nov. is proposed, while strain C24T (= NCTC 14980T = CGMCC 1.90329T) represents a distinct novel subspecies, for which the name Schaalia dentiphila subsp. denticola. subsp. nov. is proposed. This study enriches our understanding of the genomic diversity of Schaalia species and paves the way for further investigations into their roles in oral health. SIGNIFICANCE: This research reveals two Schaalia strains, NCTC 9931 T and C24T, as novel entities with distinct genomic features. Expanding the taxonomic framework of the genus Schaalia, this study offers a critical resource for probing the metabolic intricacies and resistance patterns of these bacteria. This work stands as a cornerstone for microbial taxonomy, paving the way for significant advances in clinical diagnostics.


Asunto(s)
Composición de Base , Genoma Bacteriano , Boca , Filogenia , Humanos , Genoma Bacteriano/genética , Boca/microbiología , Secuenciación Completa del Genoma , ADN Bacteriano/genética , Islas Genómicas/genética , Hibridación de Ácido Nucleico
3.
Heliyon ; 10(6): e27908, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38510031

RESUMEN

Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.

4.
Trends Plant Sci ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38480090

RESUMEN

Cyclic nucleotides 3',5'-cAMP and 3',5'-cGMP are now established signaling components of the plant cell while their 2',3' positional isomers are increasingly recognized as such. 3',5'-cAMP/cGMP is generated by adenylate cyclases (ACs) or guanylate cyclases (GCs) from ATP or GTP, respectively, whereas 2',3'-cAMP/cGMP is produced through the hydrolysis of double-stranded DNA or RNA by synthetases. Recent evidence suggests that the cyclic nucleotide generating and inactivating enzymes moonlight in proteins with diverse domain architecture operating as molecular tuners to enable dynamic and compartmentalized regulation of cellular signals. Further characterization of such moonlighting enzymes and extending the studies to noncanonical cyclic nucleotides promises new insights into the complex regulatory networks that underlie plant development and responses, thus offering exciting opportunities for crop improvement.

5.
Sci Rep ; 13(1): 20336, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37990046

RESUMEN

The rise in antibiotic-resistant bacteria caused by the excessive use of antibiotics has led to the urgent exploration of alternative antimicrobial solutions. Among these alternatives, antimicrobial proteins, and peptides (Apps) have garnered attention due to their wide-ranging antimicrobial effects. This study focuses on evaluating the antimicrobial properties of Solanum lycopersicum heme-binding protein 2 (SlHBP2), an apoplastic protein extracted from tomato plants treated with 1-Methyl tryptophan (1-MT), against Pseudomonas syringae pv. tomato DC3000 (Pst). Computational studies indicate that SlHBP2 is annotated as a SOUL heme-binding family protein. Remarkably, recombinant SlHBP2 demonstrated significant efficacy in inhibiting the growth of Pst within a concentration range of 3-25 µg/mL. Moreover, SlHBP2 exhibited potent antimicrobial effects against other microorganisms, including Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), and Botrytis cinerea. To understand the mechanism of action employed by SlHBP2 against Pst, various techniques such as microscopy and fluorescence assays were employed. The results revealed that SlHBP2 disrupts the bacterial cell wall and causes leakage of intracellular contents. To summarize, the findings suggest that SlHBP2 has significant antimicrobial properties, making it a potential antimicrobial agent against a wide range of pathogens. Although further studies are warranted to explore the full potential of SlHBP2 and its suitability in various applications.


Asunto(s)
Antiinfecciosos , Solanum lycopersicum , Proteínas de Unión al Hemo , Antiinfecciosos/farmacología , Clavibacter , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Pseudomonas syringae
6.
Nat Plants ; 9(9): 1389-1397, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37709954

RESUMEN

In bacteria, fungi and animals, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3',5'-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3',5'-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.


Asunto(s)
Adenilil Ciclasas , Proteoma , Animales , Adenilil Ciclasas/genética , Catálisis , Transducción de Señal
7.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373523

RESUMEN

Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma.


Asunto(s)
Ferroptosis , Melanoma , Humanos , Apoptosis/fisiología , Muerte Celular/fisiología , Piroptosis , Melanoma/tratamiento farmacológico , Melanoma/patología
8.
Comput Struct Biotechnol J ; 21: 326-334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36582434

RESUMEN

Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.

9.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499102

RESUMEN

Melanoma is the most aggressive form of skin cancer, characterized by life-threatening and rapidly spreading progression. Traditional targeted therapy can alleviate tumors by inactivating hyperactive kinases such as BRAF or MEK but inevitably encounters drug resistance. The advent of immunotherapy has revolutionized melanoma treatment and significantly improved the prognosis of melanoma patients. MicroRNAs (miRNAs) are intricately involved in innate and adaptive immunity and are implicated in melanoma immunotherapy. This systematic review describes the roles of miRNAs in regulating the functions of immune cells in skin and melanoma, as well as the involvement of miRNAs in pharmacology including the effect, resistance and immune-related adverse events of checkpoint inhibitors such as PD-1 and CTLA-4 inhibitors, which are used for treating cutaneous, uveal and mucosal melanoma. The expressions and functions of miRNAs in immunotherapy employing tumor-infiltrating lymphocytes and Toll-like receptor 9 agonists are also discussed. The prospect of innovative therapeutic strategies such as the combined administration of miRNAs and immune checkpoint inhibitors and the nanotechnology-based delivery of miRNAs are also provided. A comprehensive understanding of the interplay between miRNAs and immunotherapy is crucial for the discovery of reliable biomarkers and for the development of novel miRNA-based therapeutics against melanoma.


Asunto(s)
Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Melanoma/terapia , Melanoma/tratamiento farmacológico , Inmunoterapia/métodos , Neoplasias Cutáneas/terapia , Terapia Combinada
11.
Plant Sci ; 325: 111493, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36216295

RESUMEN

The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Proteínas de Plantas , Animales , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Plantas/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Nucleótidos Cíclicos/metabolismo , Plantas/metabolismo
12.
Bioinformatics ; 38(19): 4643-4644, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35993887

RESUMEN

SUMMARY: HNOXPred is a webserver for the prediction of gas-sensing heme-nitric oxide/oxygen (H-NOX) proteins from amino acid sequence. H-NOX proteins are gas-sensing hemoproteins found in diverse organisms ranging from bacteria to eukaryotes. Recently, gas-sensing complex multi-functional proteins containing only the conserved amino acids at the heme centers of H-NOX proteins, have been identified through a motif-based approach. Based on experimental data and H-NOX candidates reported in the literature, HNOXPred is created to automate and facilitate the identification of similar H-NOX centers across systems. The server features HNOXSCORES scaled from 0 to 1 that consider in its calculation, the physicochemical properties of amino acids constituting the heme center in H-NOX in addition to the conserved amino acids within the center. From user input amino acid sequence, the server returns positive hits and their calculated HNOXSCORES ordered from high to low confidence which are accompanied by interpretation guides and recommendations. The utility of this server is demonstrated using the human proteome as an example. AVAILABILITY AND IMPLEMENTATION: The HNOXPred server is available at https://www.hnoxpred.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Hemoproteínas , Humanos , Hemoproteínas/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Secuencia de Aminoácidos , Oxígeno/química , Oxígeno/metabolismo , Hemo/química , Hemo/metabolismo , Aminoácidos , NADPH Oxidasas/metabolismo , Proteínas Bacterianas/metabolismo
13.
Database (Oxford) ; 20222022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962763

RESUMEN

Drug resistance remains a global threat, and the rising trend of consuming probiotic-containing foods, many of which harbor antibiotic resistant determinants, has raised serious health concerns. Currently, the lack of accessibility to location-, drug- and species-specific information of drug-resistant probiotics has hampered efforts to combat the global spread of drug resistance. Here, we describe the development of ProbResist, which is a manually curated online database that catalogs reports of probiotic bacteria that have been experimentally proven to be resistant to antibiotics. ProbResist allows users to search for information of drug resistance in probiotics by querying with the names of the bacteria, antibiotic or location. Retrieved results are presented in a downloadable table format containing the names of the antibiotic, probiotic species, resistant determinants, region where the study was conducted and digital article identifiers (PubMed Identifier and Digital Object Identifier) hyperlinked to the original sources. The webserver also presents a simple analysis of information stored in the database. Given the increasing reports of drug-resistant probiotics, an exclusive database is necessary to catalog them in one platform. It will enable medical practitioners and experts involved in policy making to access this information quickly and conveniently, thus contributing toward the broader goal of combating drug resistance. DATABASE URL: https://probresist.com.


Asunto(s)
Probióticos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias
14.
Int J Mol Sci ; 23(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35628641

RESUMEN

Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].


Asunto(s)
Plantas , Transducción de Señal , Plantas/genética
16.
J Oral Microbiol ; 14(1): 2019992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35024089

RESUMEN

BACKGROUND: Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. AIM: To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. RESULTS: Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. CONCLUSION: Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.

17.
Front Biosci (Elite Ed) ; 13(2): 249-258, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34937312

RESUMEN

The plant proteins called ERECTA family play important role in inflorescence architecture, stomatal patterning and phloem-xylem organization. ERECTA proteins belong to the moonlighting proteins family containing the guanylyl cyclase (GC) catalytic center embedded within the intracellular kinase domain. This characteristic architecture of ERECTA proteins prompted us to experimentally confirm of enzymatic activity of one of these, BdERL1 (ERECTA-like1 from Brachypodium distachyon). We have shown that BdERL1 is dual-function protein with both kinase and GC activity. Moreover, our mutagenesis studies also revealed the catalytic roles of key conserved amino acid residues at the GC center and importantly, probing of the kinase and GC with Ca2+ and/or cGMP, shed light on the intramolecular regulations of BdERL1.


Asunto(s)
Brachypodium , Brachypodium/genética , Guanilato Ciclasa , Proteínas de Plantas/genética , Proteínas Quinasas
18.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502563

RESUMEN

In plants, rapid and reversible biological responses to environmental cues may require complex cellular reprograming. This is enabled by signaling molecules such as the cyclic nucleotide monophosphates (cNMPs) cAMP and cGMP, as well as Ca2+. While the roles and synthesis of cAMP and cGMP in plants are increasingly well-characterized, the "off signal" afforded by cNMP-degrading enzymes, the phosphodiesterases (PDEs), is, however, poorly understood, particularly so in monocots. Here, we identified a candidate PDE from the monocot Brachypodium distachyon (BDPDE1) and showed that it can hydrolyze cNMPs to 5'NMPs but with a preference for cAMP over cGMP in vitro. Notably, the PDE activity was significantly enhanced by Ca2+ only in the presence of calmodulin (CaM), which interacts with BDPDE1, most likely at a predicted CaM-binding site. Finally, based on our biochemical, mutagenesis and structural analyses, we constructed a comprehensive amino acid consensus sequence extracted from the catalytic centers of annotated and/or experimentally validated PDEs across species to enable a broad application of this search motif for the identification of similar active sites in eukaryotes and prokaryotes.


Asunto(s)
Brachypodium/enzimología , Calcio/metabolismo , Calmodulina/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Brachypodium/genética , Dominio Catalítico , AMP Cíclico , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Hidrólisis , Cinética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
19.
Front Plant Sci ; 12: 711749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456950

RESUMEN

Adenylyl cyclases (ACs) and their catalytic product cAMP are regulatory components of many plant responses. Here, we show that an amino acid search motif based on annotated adenylate cyclases (ACs) identifies 12 unique Arabidopsis thaliana candidate ACs, four of which have a role in the biosynthesis of the stress hormone abscisic acid (ABA). One of these, the 9-cis-epoxycarotenoid dioxygenase (NCED3 and At3g14440), was identified by sequence and structural analysis as a putative AC and then tested experimentally with two different methods. Given that the in vitro activity is low (fmoles cAMP pmol-1 protein min-1), but highly reproducible, we term the enzyme a crypto-AC. Our results are consistent with a role for ACs with low activities in multi-domain moonlighting proteins that have at least one other distinct molecular function, such as catalysis or ion channel activation. We propose that crypto-ACs be examined from the perspective that considers their low activities as an innate feature of regulatory ACs embedded within multi-domain moonlighting proteins. It is therefore conceivable that crypto-ACs form integral components of complex plant proteins participating in intra-molecular regulatory mechanisms, and in this case, potentially linking cAMP to ABA synthesis.

20.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200573

RESUMEN

In recent years, cyclic guanosine 3',5'-cyclic monophosphate (cGMP) and guanylyl cyclases (GCs), which catalyze the formation of cGMP, were implicated in a growing number of plant processes, including plant growth and development and the responses to various stresses. To identify novel GCs in plants, an amino acid sequence of a catalytic motif with a conserved core was designed through bioinformatic analysis. In this report, we describe the performed analyses and consider the changes caused by the introduced modification within the GC catalytic motif, which eventually led to the description of a plasma membrane receptor of peptide signaling molecules-BdPepR2 in Brachypodium distachyon. Both in vitro GC activity studies and structural and docking analyses demonstrated that the protein could act as a GC and contains a highly conserved 14-aa GC catalytic center. However, we observed that in the case of BdPepR2, this catalytic center is altered where a methionine instead of the conserved lysine or arginine residues at position 14 of the motif, conferring higher catalytic activity than arginine and alanine, as confirmed through mutagenesis studies. This leads us to propose the expansion of the GC motif to cater for the identification of GCs in monocots. Additionally, we show that BdPepR2 also has in vitro kinase activity, which is modulated by cGMP.


Asunto(s)
Brachypodium/enzimología , GMP Cíclico/metabolismo , Guanilato Ciclasa/metabolismo , Mutación , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Técnicas In Vitro , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Conformación Proteica , Homología de Secuencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA